In statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
The concept underlying the method is based on the probability integral transform, in that a set of independent random samples derived from any random variable should on average be uniformly distributed with respect to the cumulative distribution function of the random variable. The MPS method chooses the parameter values that make the observed data as uniform as possible, according to a specific quantitative measure of uniformity.
One of the most common methods for estimating the parameters of a distribution from data, the method of maximum likelihood (MLE), can break down in various cases, such as involving certain mixtures of continuous distributions. In these cases the method of maximum spacing estimation may be successful.
Apart from its use in pure mathematics and statistics, the trial applications of the method have been reported using data from fields such as hydrology, econometrics, magnetic resonance imaging, and others.
The MSE method was derived independently by Russel Cheng and Nik Amin at the University of Wales Institute of Science and Technology, and Bo Ranneby at the Swedish University of Agricultural Sciences. The authors explained that due to the probability integral transform at the true parameter, the “spacing” between each observation should be uniformly distributed. This would imply that the difference between the values of the cumulative distribution function at consecutive observations should be equal. This is the case that maximizes the geometric mean of such spacings, so solving for the parameters that maximize the geometric mean would achieve the “best” fit as defined this way.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
The students learn different financial risk measures and their risk theoretical properties. They learn how to design and implement risk engines, with model estimation, forecast, reporting and validati
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Le problème du char d'assaut allemand réfère à une estimation de la valeur maximale d'une loi uniforme discrète à partir d'un échantillonnage sans remplacement. Il tire son nom de son application par les Alliés de la Seconde Guerre mondiale afin d'estimer la production de chars d'assaut allemands. Le problème peut être abordé selon les approches d' ou bayésienne. Selon l'approche fréquentiste, le nombre total () est fonction du nombre d'échantillons () et de la valeur de l'échantillon le plus élevé () selon la relation suivante : On suppose que l'ennemi produit une série de chars immatriculés par des entiers en commençant par le chiffre 1.
Lajustement de la loi de probabilité ou simplement lajustement de la loi est l'ajustement d'une loi de probabilité à une série de données concernant la mesure répétée d'un phénomène aléatoire. L'ajustement de la loi a pour but de prédire la probabilité ou de prévoir la fréquence d'occurrence de l'ampleur du phénomène dans un certain intervalle. Il existe de nombreuses lois de probabilité, dont certaines peuvent être ajustées plus étroitement à la fréquence observée des données que d'autres, selon les caractéristiques du phénomène et de la loi.
In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter. For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.
Couvre l'estimation maximale de la probabilité, en mettant l'accent sur l'estimation-distribution ML, l'estimation de la réduction et les fonctions de perte.
Activity-based models offer the potential for a far deeper understanding of daily mobility behaviour than trip-based models. Based on the fundamental assumption that travel demand is derived from the need to do activities, they are flexible tools that aim ...
In this paper we propose an unbiased Monte Carlo maximum likelihood estimator for discretely observed Wright-Fisher diffusions. Our approach is based on exact simulation techniques that are of special interest for diffusion processes defined on a bounded d ...
A user’s benefit from the energy stored in a battery over its lifetime depends on the time-varying characteristics of the battery, which are in turn affected by the chosen usage behavior. Both the capacity shrinkage and the number of lifetime cycles are st ...