Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la régression linéaire probabiliste et la régression de processus gaussien, en mettant l'accent sur la sélection du noyau et l'ajustement hyperparamétrique pour des prédictions précises.
Couvre la recherche probabiliste de l'information, les modèles de probabilité d'interrogation, la modélisation du langage et les algorithmes de rétroaction de pertinence.
Explore l'estimation des paramètres, les erreurs standard et les intervalles de confiance en utilisant le théorème de la limite centrale et des exemples pratiques.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore les algorithmes d'apprentissage génératif, les règles de décision et les propriétés de distribution gaussienne dans l'apprentissage automatique.
Explore l'analyse de régression logistique des données sur le crabe en fer à cheval, en se concentrant sur l'interprétation du rapport de cotes et l'ajustement du modèle.
Explore l'estimation de la probabilité maximale, la régression logistique, l'estimation de la covariance et les machines vectorielles de soutien pour les problèmes de classification.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.