Concepts associés (161)
Chaleur (thermodynamique)
vignette|Le Soleil et la Terre constituent un exemple continu de processus de chauffage. Une partie du rayonnement thermique du Soleil frappe et chauffe la Terre. Par rapport au Soleil, la Terre a une température beaucoup plus basse et renvoie donc beaucoup moins de rayonnement thermique au Soleil. La chaleur dans ce processus peut être quantifiée par la quantité nette et la direction (Soleil vers Terre) d'énergie échangée lors du transfert thermique au cours d'une période de temps donnée.
Loi de distribution des vitesses de Maxwell
En théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition statistique des vitesses des particules dans un gaz homogène à l'équilibre thermodynamique. Les vecteurs vitesse des particules suivent une loi normale. Cette loi a été établie par James Clerk Maxwell en 1860 et confirmée ultérieurement par Ludwig Boltzmann à partir de bases physiques qui fondent la physique statistique en 1872 et 1877.
Extensivité et intensivité (physique)
Les grandeurs extensives et intensives sont des catégories de grandeurs physiques d'un système physique : une propriété est « intensive » si sa valeur ne dépend pas de la taille du système (en particulier, si sa valeur est la même en tout point d'un système homogène) : par exemple, la température ou la pression ; une propriété est « extensive » si elle est proportionnelle à une quantité caractéristique du système : par exemple, la masse ou le volume.
Vibration
thumb Une vibration est un mouvement d'oscillation mécanique autour d'une position d'équilibre stable ou d'une trajectoire moyenne. La vibration d'un système peut être libre ou forcée. Tout mouvement vibratoire peut être défini par les caractéristiques suivantes : un degré de liberté ; deux ou plusieurs degrés de liberté ; Une masse libre dans l'espace a naturellement six degrés de liberté : trois translations (notées Tx, Ty, Tz) ; trois rotations (notées Rx, Ry, Rz).
Volume massique
Le volume massique d'un objet, ou volume spécifique, est le quotient de son volume par sa masse. C'est donc l'inverse de sa masse volumique. Il est souvent noté (V minuscule) ou (la lettre minuscule grecque nu), en italique. avec : masse de l'objet ; volume de l'objet ; masse volumique de l'objet. Le volume massique s'exprime en mètres cubes par kilogramme (m/kg) dans le Système international d'unités (en centimètres cubes par gramme (cm/g) dans le système CGS) : = ; = .
Troisième principe de la thermodynamique
vignette|Walther Hermann Nernst. Le troisième principe de la thermodynamique, appelé aussi principe de Nernst (1906), énonce que : La valeur de l'entropie de tout corps pur dans l'état de cristal parfait est nulle à la température de . Cela permet d'avoir une valeur déterminée de l'entropie (et non pas « à une constante additive près »). Ce principe est irréductiblement lié à l'indiscernabilité quantique des particules identiques. Il a été énoncé par Walther Nernst en 1906, puis Max Planck en 1912.
Limite thermodynamique
En physique statistique, la limite thermodynamique est la limite mathématique conjointe où : le nombre de particules du système considéré tend vers l'infini ; le volume du système considéré tend vers l'infini ; la densité de particules du système considéré reste constante. Dans le problème thermodynamique de la réunion de systèmes disjoints, on peut aussi voir la limite thermodynamique comme étant le passage d'effets de surface prépondérants à des effets de volume prépondérants.
Thermométrie
La thermométrie est le domaine de la physique qui concerne la mesure de la température. Parmi les grandeurs physiques, la température est l'une des plus délicates à mesurer de façon rigoureuse pour deux raisons. D'une part, il faut bien définir le système dont on mesure la température. Par exemple, laisser quelques instants une cuillère dans un plat très chaud, avec le manche qui dépasse ; le manche peut être saisi à la main tandis que la partie bombée sera brûlante.
État plasma
thumb|upright|Le soleil est une boule de plasma. thumb|Lampe à plasma.|168x168px thumb|upright|Les flammes de haute température sont des plasmas. L'état plasma est un état de la matière, tout comme l'état solide, l'état liquide ou l'état gazeux, bien qu'il n'y ait pas de transition brusque pour passer d'un de ces états au plasma ou réciproquement. Il est visible sur Terre, à l'état naturel, le plus souvent à des températures élevées favorables aux ionisations, signifiant l’arrachement d'électrons aux atomes.
Principe zéro de la thermodynamique
vignette|250px|Principe zéro de la thermodynamique. Une paroi adiabatique ne laisse pas passer la chaleur, contrairement à une paroi diathermane. Si A et C sont initialement en équilibre thermique, ainsi que B et C, alors, après inversion des parois, A et B sont immédiatement en équilibre thermique, sans besoin d'échanger de la chaleur. En physique, et plus particulièrement en thermodynamique, le principe zéro de la thermodynamique énonce que : Dans la pratique, ce principe institue la température comme la grandeur caractéristique de l'équilibre thermique et le thermomètre comme un moyen de vérifier cet équilibre.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.