Concept

Schwarz triangle

Concepts associés (16)
Hurwitz's automorphisms theorem
In mathematics, Hurwitz's automorphisms theorem bounds the order of the group of automorphisms, via orientation-preserving conformal mappings, of a compact Riemann surface of genus g > 1, stating that the number of such automorphisms cannot exceed 84(g − 1). A group for which the maximum is achieved is called a Hurwitz group, and the corresponding Riemann surface a Hurwitz surface. Because compact Riemann surfaces are synonymous with non-singular complex projective algebraic curves, a Hurwitz surface can also be called a Hurwitz curve.
Uniform tilings in hyperbolic plane
In hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.
Diagramme de Coxeter-Dynkin
En géométrie, un diagramme de Coxeter-Dynkin est un graphe représentant un ensemble relationnel de miroirs (ou d'hyperplans de réflexion) dans l'espace pour une construction kaléidoscopique. En tant que graphe lui-même, le diagramme représente les groupes de Coxeter, chaque nœud du graphe représente un miroir (facette du domaine) et chaque branche du graphe représente l'ordre de l'angle diédral entre deux miroirs (sur une arête du domaine). En plus, les graphes ont des anneaux (cercles) autour des nœuds pour les miroirs actifs représentant un polytope précis.
Triangle hyperbolique
droite|vignette|250x250px| Un triangle hyperbolique sur une surface en selle de cheval. Un triangle hyperbolique est, en géométrie hyperbolique, un triangle dans le plan hyperbolique. Comme en géométrie plane, un triangle est constitué de trois segments (ses côtés) reliant trois points (ses sommets). Tout comme dans le cas euclidien, trois points d'un espace hyperbolique de dimension quelconque sont toujours coplanaires. Il suffit donc de caractériser les triangles dans le plan hyperbolique pour en avoir une description dans tous les espaces hyperboliques de dimensions supérieures.
Polyèdre uniforme
Un polyèdre uniforme est un polyèdre dont les faces sont des polygones réguliers et qui est isogonal, c'est-à-dire que pour tout couple de sommets, il existe une isométrie qui applique un sommet sur l'autre. Il en découle que tous les sommets sont congruents et que le polyèdre possède un haut degré de symétrie par réflexion et rotation. La notion de polyèdre uniforme est généralisée, pour un nombre de dimensions quelconque, par celle de . Les polyèdres uniformes peuvent être réguliers, quasi réguliers ou semi-réguliers.
Quartique de Klein
thumb|La quartique de Klein est le quotient d'un pavage uniforme triangulaire d'ordre 7. En géométrie hyperbolique, la quartique de Klein, du nom du mathématicien allemand Felix Klein, est une surface de Riemann compacte de genre 3. Elle a le groupe d'automorphismes d'ordre le plus élevé possible parmi les surfaces de Riemann de genre 3, à savoir le groupe simple d'ordre 168. La quartique de Klein est en conséquence la de genre le plus bas possible. Surface de Bolza Surface de Macbeath Théorème de Stark-Hee
Construction de Wythoff
En géométrie, une construction de Wythoff, nommée en l'honneur du mathématicien Willem Abraham Wythoff, est une méthode pour construire un polyèdre uniforme ou un pavage plan. On l'appelle souvent construction kaléidoscopique de Wythoff. Elle repose sur le pavage d'une sphère, avec des triangles sphériques. Si trois miroirs sont placés de telle manière que leurs plans se coupent en un point unique, alors les miroirs entourent un triangle sphérique sur la surface d'une sphère quelconque centrée en ce point et par réflexions répétées, on obtient une multitude de copies du triangle.
Heptagonal tiling
In geometry, a heptagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {7,3}, having three regular heptagons around each vertex. This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli symbol {n,3}. From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling. Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.
Order-7 triangular tiling
In geometry, the order-7 triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,7}. The symmetry group of the tiling is the (2,3,7) triangle group, and a fundamental domain for this action is the (2,3,7) Schwarz triangle. This is the smallest hyperbolic Schwarz triangle, and thus, by the proof of Hurwitz's automorphisms theorem, the tiling is the universal tiling that covers all Hurwitz surfaces (the Riemann surfaces with maximal symmetry group), giving them a triangulation whose symmetry group equals their automorphism group as Riemann surfaces.
Triangle group
In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles called Möbius triangles, each one a fundamental domain for the action. Let l, m, n be integers greater than or equal to 2.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.