Calcul de ReggeEn relativité générale, le calcul de Regge est un formalisme permettant de créer des d'espaces-temps résultants de l'équation d'Einstein. Ce formalisme a été fondé par le théoricien Tullio Regge au début des années 1960. Le calcul de Regge, et ses développements subséquents, sont appliqués dans des domaines tels celui de la gravité quantique. Le point de départ des travaux de Regge est que toute variété lorentzienne permet une triangulation. De plus, la courbure de l'espace-temps peut s'écrire en fonction de .
Système d'unités de PlanckEn physique, le système d'unités de Planck est un système d'unités de mesure défini uniquement à partir de constantes physiques fondamentales. Il a été nommé en référence à Max Planck, qui l'introduisit (partiellement) à la fin de l'article présentant la constante qui porte à présent son nom, la constante de Planck. C'est un système d'unités naturelles, dans le sens où une liste définie de constantes physiques fondamentales valent 1, lorsqu’elles sont exprimées dans ce système.
Spin foamIn physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description of quantum gravity. These structures are employed in loop quantum gravity as a version of quantum foam. Loop quantum gravity The covariant formulation of loop quantum gravity provides the best formulation of the dynamics of the theory of quantum gravity – a quantum field theory where the invariance under diffeomorphisms of general relativity applies.
Ensembles causauxLes ensembles causaux (causal sets), ou théorie des ensembles causaux, est une théorie physique qui définit une approche de la gravitation quantique. Ses principes fondateurs sont que l'espace-temps est fondamentalement discret (une distribution de points d'un espace-temps discret, appelés les éléments d'ensemble causal) et que les évènements de l'espace-temps sont reliés par un ordre partiel. Cet ordre partiel possède la signification physique des relations causales des évènements de l'espace-temps.
Asymptotic safety in quantum gravityAsymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences.
Gravitation quantique à bouclesLa gravitation quantique à boucles (loop quantum gravity en anglais) est une tentative de formuler une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est fondée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne (l'équation de Wheeler-DeWitt), les trois autres interactions fondamentales n'étant pas considérées dans un premier temps.
Gravité quantiqueLa gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.
Group field theoryGroup field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. It can be shown that its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields).
SimplexeEn mathématiques, et plus particulièrement en géométrie, un simplexe est une généralisation du triangle à une dimension quelconque. En géométrie, un simplexe ou n-simplexe est l'analogue à n dimensions du triangle. Il doit son nom au fait que c'est l'objet géométrique clos le « plus simple » qui ait n dimensions. Par exemple sur une droite (1 dimension) l'objet le plus simple à 1 dimension est le segment, alors que dans le plan (2 dimensions) l'objet géométrique clos le plus simple à 2 dimensions est le triangle, et dans l'espace (3 dimensions) l'objet géométrique clos le plus simple à 3 dimensions est le tétraèdre (pyramide à base triangulaire).