En mathématiques, plus précisément en théorie des catégories, la catégorie des petites catégories, notée Cat, est la catégorie dont les objets sont les petites catégories et dont les morphismes sont les foncteurs entre petites catégories. Cat peut en fait être considérée comme une 2-catégorie, les transformations naturelles servant de 2-morphismes.
L'objet initial de Cat est la catégorie vide 0, qui est la catégorie sans objets et sans morphismes. L'objet final est la catégorie finale ou catégorie triviale 1 ayant un seul objet et un seul morphisme.
La catégorie Cat est elle-même une grande catégorie, et donc pas un objet en soi. Pour éviter des problèmes analogues au paradoxe de Russell, on ne peut pas former la « catégorie de toutes les catégories ». Mais il est possible de former une quasi-catégorie (c'est-à-dire que les objets et les morphismes forment simplement un conglomérat) de toutes les catégories.
La catégorie Cat a un foncteur d'oubli U vers la catégorie des carquois Quiv :
U : Cat → Quiv
Ce foncteur oublie les morphismes identité d'une catégorie donnée, ainsi que les compositions de morphismes. L'adjoint à gauche de ce foncteur est un foncteur F ramenant Quiv aux catégories libres correspondantes :
F : Quiv → Chat
Cat a toutes les petites limites et colimites.
Cat est une catégorie cartésienne fermée, munie d'une exponentielle donnée par la catégorie de foncteurs .
Cat n'est pas localement cartésienne fermée.
Cat est localement finiment présentable.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
En mathématiques, la théorie des catégories supérieures est la partie de la théorie des catégories à un ordre supérieur, ce qui signifie que certaines égalités sont remplacées par des flèches explicites afin de pouvoir étudier explicitement la structure derrière ces égalités. La théorie des catégories supérieures est souvent appliquée en topologie algébrique (en particulier en théorie de l'homotopie ), où l'on étudie les invariants algébriques des espaces, tels que leur ∞-groupoïde fondamental faible.
Une catégorie enrichie sur une catégorie monoïdale , ou -catégorie est une extension du concept mathématique de catégorie, où les morphismes, au lieu de former une classe ou un ensemble dépourvu de structure, sont des éléments de . Le concept de catégorie enrichie part de l'observation que dans de nombreuses situations, les morphismes ont une structure naturelle d'espace vectoriel ou topologique. La catégorie doit être monoïdale afin de pouvoir définir la composition des morphismes, appelés dans ce cas hom-objets au lieu de hom-sets.
En mathématiques, et plus particulièrement en théorie des catégories, une 2-catégorie est une catégorie avec des « morphismes entre les morphismes », c'est-à-dire que chaque « ensemble des morphismes » transporte la structure d'une catégorie. Une 2-catégorie peut être formellement définie comme étant une catégorie enrichie au-dessus de Cat (la catégorie des catégories petites et les foncteurs entre elles), avec la structure monoïdale donnée par le produit de deux catégories.
Publications associées (49)
Couvre le transfert de structures de modèles par des adjonctions dans le contexte des catégories de modèles.
Couvre la bijection entre les applications linéaires de L(X) à V et les applications de X à U(V).
Explore les catégories de construction à partir de graphiques et l'encodage de l'information par les functeurs.
Object detection plays a critical role in various computer vision applications, encompassingdomains like autonomous vehicles, object tracking, and scene understanding. These applica-tions rely on detectors that generate bounding boxes around known object c ...
EPFL2023
Visual estimates of stimulus features are systematically biased toward the features of previously encountered stimuli. Such serial dependencies have often been linked to how the brain maintains perceptual continuity. However, serial dependence has mostly b ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...