Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, et plus particulièrement en théorie des catégories, une 2-catégorie est une catégorie avec des « morphismes entre les morphismes », c'est-à-dire que chaque « ensemble des morphismes » transporte la structure d'une catégorie. Une 2-catégorie peut être formellement définie comme étant une catégorie enrichie au-dessus de Cat (la catégorie des catégories petites et les foncteurs entre elles), avec la structure monoïdale donnée par le produit de deux catégories. Une 2-catégorie (stricte) est la donnée : d'une classe de 0-cellules (ou objets) ; pour tous objets A, B, d'une catégorie . Les objets f, g : A → B de cette catégorie sont appelés 1-cellules (ou morphismes ou encore 1-morphismes) et les morphismes α : f ⇒ g sont appelés 2-cellules (ou 2-morphismes). Les 1-morphismes peuvent être composés suivant les objets. Il s'agit de la composition usuelle des morphismes dans une catégorie. Les 2-morphismes peuvent être composés de deux manières : suivant les objets et suivant les 1-morphismes. Ces deux compositions sont appelées respectivement composition horizontale et composition verticale. La composition verticale est définie comme suit. Soient deux 0-cellules A et B, et trois 1-morphismes f, g, h : A → B. Soient les 2-morphismes α : f ⇒ g et β : g ⇒ h. Alors la composition verticale de α et β est le 2-morphisme β α : f ⇒ h, qui est la composition de morphismes au sens usuel dans la catégorie . La composition horizontale est définie comme suit. Soient trois 0-cellules A, B et C, et quatre 1-morphismes f, g: A → B et f' , g' : B → C. Soient deux 2-morphismes α : f ⇒ g et β : f' ⇒ g' . On peut définir les composées de 1-morphismes f'f: A → C et g'g: A → C. Dans une 2-catégorie, on suppose qu'il existe un foncteur de vers , qui associe aux deux 2-morphismes α et β un 2-morphisme noté βα : f'f⇒ g'g. Cela se traduit par une relation de cohérence entre les compositions horizontale et verticale. Si on a quatre 2-morphismes α : f ⇒ f' , α' : f' ⇒ f", β : g ⇒ g' , β' : g' ⇒ g", alors on a (β' β)(α' α) = β'α' βα.