In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions. The stability constant(s) provide(s) the information required to calculate the concentration(s) of the complex(es) in solution. There are many areas of application in chemistry, biology and medicine.
Jannik Bjerrum (son of Niels Bjerrum) developed the first general method for the determination of stability constants of metal-ammine complexes in 1941. The reasons why this occurred at such a late date, nearly 50 years after Alfred Werner had proposed the correct structures for coordination complexes, have been summarised by Beck and Nagypál. The key to Bjerrum's method was the use of the then recently developed glass electrode and pH meter to determine the concentration of hydrogen ions in solution. Bjerrum recognised that the formation of a metal complex with a ligand was a kind of acid–base equilibrium: there is competition for the ligand, L, between the metal ion, Mn+, and the hydrogen ion, H+. This means that there are two simultaneous equilibria that have to be considered. In what follows electrical charges are omitted for the sake of generality. The two equilibria are
Hence by following the hydrogen ion concentration during a titration of a mixture of M and HL with base, and knowing the acid dissociation constant of HL, the stability constant for the formation of ML could be determined. Bjerrum went on to determine the stability constants for systems in which many complexes may be formed.
The following twenty years saw a veritable explosion in the number of stability constants that were determined. Relationships, such as the Irving-Williams series were discovered.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Évaluation de la qualité d'une rivière en utilisant des méthodes d'observation ainsi que des méthodes physico-chimiques et biologiques. Collecte d'échantillons sur le terrain et analyses de laboratoir
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
La denticité (du latin dentis, dent, le ligand étant vu comme « mordant » l'atome central) est le nombre d'atomes d'un ligand (ou coordinat) pouvant se lier à un atome central, en général un métal, dans un complexe. Lorsqu'un seul atome du ligand peut se lier à l'atome central, la denticité du ligand est de un et on parle de ligand « monodenté ». Si à l'inverse le ligand peut se lier à l'atome central via plusieurs atomes, on parle de ligand « polydenté » ou « multidenté ».
An aminopolycarboxylic acid (sometimes abbreviated APCA) is a chemical compound containing one or more nitrogen atoms connected through carbon atoms to two or more carboxyl groups. Aminopolycarboxylates that have lost acidic protons form strong complexes with metal ions. This property makes aminopolycarboxylic acids useful complexone in a wide variety of chemical, medical, and environmental applications. The parent of this family of ligands is the amino acid glycine, H2NCH2COOH, in which the amino group, NH2, is separated from the carboxyl group, COOH by a single methylene group, CH2.
L'ion uranyle est le cation de formule UO2+ dans lequel l'uranium est à son état d'oxydation +6. Cet oxycation forme des sels avec les acides. C'est la forme la plus fréquente de l'uranium dans sa chimie en solution aqueuse. Les composés solides d'uranyle sont souvent colorés en vert, jaune, orange ou rouge. Comme tous les composés de l'uranium, les sels d'uranyle sont toxiques et leur toxicité est augmentée par le fait qu'ils sont plus facilement assimilables par l'organisme que d'autres formes de l'uranyle.
Couvre les nombres de coordination, les ligands communs et les géométries privilégiées en chimie de coordination, en mettant l'accent sur la distribution spatiale entre les ligands et le rôle des configurations d'électrons d8.
Explore les ligands chélatants, la stabilité du complexe métallique, l'hydrolyse des ions métalliques et la complexation dans les eaux naturelles.
, , , ,
Octahedral coordination cages of the general formula Pd6L1212 were obtained by combining Pd(CH3CN)42 with heteroditopic N-donor ligands. Four different ligands were employed. These ligands have 3-pyridyl donor groups at one end and 4-pyridyl, ...
2024
Time series of hydrochemical parameters support the investigation of dominant karst hydrological processes and conceptual model structures. Nevertheless, high costs for sample collection and analyses cause hydrochemical data to be rarely available at a suf ...
Hydrochemical data of karst springs provide valuable insights into the internal hydrodynamical functioning of karst systems and support model structure identification. However, the collection of high-frequency time series of major solute species is limited ...