En mathématiques, et plus particulièrement dans la théorie des graphes, le théorème de Brooks donne une relation entre le degré maximal d'un graphe connexe non orienté et son nombre chromatique.
Selon ce théorème, dans un graphe où chaque sommet a au plus Δ voisins, les sommets peuvent être colorés avec au plus Δ couleurs, sans que deux sommets adjacents n'aient la même couleur, sauf dans deux cas, les graphes complets et les graphes cycles de longueur impaire, qui ont besoin de Δ + 1 couleurs.
Le théorème porte le nom de R. Leonard Brooks, qui en a publié une démonstration en 1941. Une coloration avec le nombre de couleurs décrit par le théorème de Brooks est parfois appelée coloration de Brooks ou Δ-coloration. László Lovász a donné une démonstration plus simple du théorème en 1975.
Il n'est pas très dur de démontrer que, pour tout graphe, χ(G) ≤ Δ + 1. En effet, n'importe quel sommet v possède au maximum Δ sommets voisins, qui dans le pire des cas sont tous de couleur différente. Même dans ce cas, on peut toujours prendre la (Δ + 1)ème couleur pour colorer v. Le mérite de Brooks a été de diminuer cette majoration de 1 unité dans la plupart des cas.
Il existe plusieurs démonstrations du théorème de Brooks. On peut par exemple raisonner par récurrence sur le nombre de sommets du graphe. La démonstration qui suit procède autrement, elle s'appuie sur l'algorithme glouton de coloration des graphes et a donc le mérite de donner des algorithmes pour colorer le graphe (c'est une démonstration constructive).
Cette démonstration a été présentée par Ross Churchley en 2010 d'après les travaux de John Adrian Bondy en 2003. La fin remplace le raisonnement de Bondy par d'autres travaux pour ne pas avoir à faire appel aux résultats concernant les arbres de parcours en profondeur d'abord.
Dans ce qui suit, nous examinons successivement quatre cas :
les graphes non réguliers ;
les graphes réguliers non biconnexes ;
les graphes réguliers biconnexes de degré inférieur à 3 ;
les graphes réguliers biconnexes de degré supérieur ou égal à 3.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le théorème de Vizing est un théorème de la théorie des graphes qui stipule que la coloration des arêtes d'un graphe G peut s'effectuer à l'aide de Δ+1 couleurs au maximum, où Δ est le degré maximal du graphe G. Il est dû à Vadim G. Vizing. Une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. On note χ′(G) le nombre minimum de couleur nécessaire pour avoir une coloration des arêtes.
thumb|Un graphe non orienté où on a indiqué le degré de chaque sommet sur ce sommet. Dans ce graphe, le degré maximal est et le degré minimal est . En mathématiques, et plus particulièrement en théorie des graphes, le degré (ou valence) d'un sommet d'un graphe est le nombre de liens (arêtes ou arcs) reliant ce sommet, avec les boucles comptées deux fois. Le degré d'un sommet est noté . Dans le cas d'un graphe orienté, on parle aussi du degré entrant d'un sommet , c'est-à-dire le nombre d'arcs dirigés vers le sommet , et du degré sortant de ce sommet , c'est-à-dire le nombre d'arcs sortant de .
thumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Explore l'efficacité des commérages dans les systèmes décentralisés, couvrant les protocoles, les besoins d'interaction et l'optimisation de la bande passante, ainsi que les algorithmes de recherche et les optimisations.
Explore la physique statistique des clusters, en se concentrant sur la complexité et le comportement d'équilibre.
Comparer la coloration aléatoire et symétrique des graphiques en termes de coloration et d'équilibre des amas.
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
This paper studies sufficient conditions to obtain efficient distributed algorithms coloring graphs optimally (i.e. with the minimum number of colors) in the LOCAL model of computation. Most of the work on distributed vertex coloring so far has focused on ...
A system of sets forms an m-fold covering of a set X if every point of X belongs to at least m of its members. A 1-fold covering is called a covering. The problem of splitting multiple coverings into several coverings was motivated by classical density est ...