A language is said to be homogeneous when all its words have the same length. Homogeneous languages thus form a monoid under concatenation. It becomes freely commutative under the simultaneous actions of every permutation group G(n) on the collection of ho ...
Let be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic and let be a subgroup of containing a regular unipotent element of . By a theorem of Testerman, is contained in a connected subgroup of of type ...
Let Y be a simply connected simple algebraic group over an algebraically closed field k of characteristic p and let X be a maximal closed connected simple subgroup of Y.
Excluding some small primes in specific cases, we classify the p-restrict ...
Let G be a simple algebraic group over an algebraically closed field K of characteristic p >= 0, let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG-module, which is p-restricted, tensor indecomposable and rational. Assume that ...
A linear algebraic group G defined over a field k is called special if every G-torsor over every field extension of k is trivial. In 1958 Grothendieck classified special groups in the case where the base field is algebraically closed. In this paper we desc ...
We study the relation between various notions of exterior convexity introduced in [S. Bandyopadhyay, B. Dacorogna and S. Sil, J. Eur. Math. Soc. 17 (2015) 1009-1039.] with the classical notions of rank one convexity, quasiconvexity and polyconvexity. To th ...
Let G be a connected reductive algebraic group over an algebraically closed field k,gamma is an element of g( k(( epsilon ))) a semisimple regular element, we introduce a fundamental domain F gamma for the affine Springer fibers X gamma. We show that the p ...
Let R be a semilocal principal ideal domain. Two algebraic objects over R in which scalar extension makes sense (e.g. quadratic spaces) are said to be of the same genus if they become isomorphic after extending scalars to all completions of R and its fract ...
We introduce a novel generic energy functional that we employ to solve inverse imaging problems within a variational framework. The proposed regularization family, termed as structure tensor total variation (STV), penalizes the eigenvalues of the structure ...
Let K be an algebraically closed field of characteristic and let W be a finite-dimensional K-vector space of dimension greater than or equal to 5. In this paper, we give the structure of certain Weyl modules for in the case where , as well as the dimension ...