Let Y be a simply connected simple algebraic group over an algebraically closed field k of characteristic p and let X be a maximal closed connected simple subgroup of Y.
Excluding some small primes in specific cases, we classify the p-restrict ...
A linear algebraic group G defined over a field k is called special if every G-torsor over every field extension of k is trivial. In 1958 Grothendieck classified special groups in the case where the base field is algebraically closed. In this paper we desc ...
Let R be a semilocal principal ideal domain. Two algebraic objects over R in which scalar extension makes sense (e.g. quadratic spaces) are said to be of the same genus if they become isomorphic after extending scalars to all completions of R and its fract ...
A language is said to be homogeneous when all its words have the same length. Homogeneous languages thus form a monoid under concatenation. It becomes freely commutative under the simultaneous actions of every permutation group G(n) on the collection of ho ...
Let be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic and let be a subgroup of containing a regular unipotent element of . By a theorem of Testerman, is contained in a connected subgroup of of type ...
Let K be an algebraically closed field of characteristic and let W be a finite-dimensional K-vector space of dimension greater than or equal to 5. In this paper, we give the structure of certain Weyl modules for in the case where , as well as the dimension ...
Let G be a connected reductive algebraic group over an algebraically closed field k,gamma is an element of g( k(( epsilon ))) a semisimple regular element, we introduce a fundamental domain F gamma for the affine Springer fibers X gamma. We show that the p ...
We study the relation between various notions of exterior convexity introduced in [S. Bandyopadhyay, B. Dacorogna and S. Sil, J. Eur. Math. Soc. 17 (2015) 1009-1039.] with the classical notions of rank one convexity, quasiconvexity and polyconvexity. To th ...
We introduce a novel generic energy functional that we employ to solve inverse imaging problems within a variational framework. The proposed regularization family, termed as structure tensor total variation (STV), penalizes the eigenvalues of the structure ...
Let G be a simple algebraic group over an algebraically closed field K of characteristic p >= 0, let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG-module, which is p-restricted, tensor indecomposable and rational. Assume that ...