Glossary of algebraic geometryThis is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Morphism of algebraic varietiesIn algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
Quasi-projective varietyIn mathematics, a quasi-projective variety in algebraic geometry is a locally closed subset of a projective variety, i.e., the intersection inside some projective space of a Zariski-open and a Zariski-closed subset. A similar definition is used in scheme theory, where a quasi-projective scheme is a locally closed subscheme of some projective space. An affine space is a Zariski-open subset of a projective space, and since any closed affine subset can be expressed as an intersection of the projective completion and the affine space embedded in the projective space, this implies that any affine variety is quasiprojective.
Élément entierEn mathématiques, et plus particulièrement en algèbre commutative, les éléments entiers sur un anneau commutatif sont à la fois une généralisation des entiers algébriques (les éléments entiers sur l'anneau des entiers relatifs) et des éléments algébriques dans une extension de corps. C'est une notion très utile en théorie algébrique des nombres et en géométrie algébrique. Son émergence a commencé par l'étude des entiers quadratiques, en particulier les entiers de Gauss. On fixe un anneau commutatif A.
Géométrie arithmétiquevignette|Exemples de figures géométriques: un cône et un cylindre. La géométrie arithmétique est une branche de la théorie des nombres, qui utilise des outils de géométrie algébrique pour s'attaquer à des problèmes arithmétiques. Quelques exemples de questions qui peuvent se poser : Si on sait trouver des racines d'une équation polynomiale dans toutes les complétions d'un corps de nombres, peut-on en déduire que cette équation a des racines sur ce corps ? On sait répondre à la question dans certains cas, on sait que la réponse est non dans d'autres cas, mais on pense (c'est une conjecture) connaître l'obstruction et donc savoir reconnaître quand cela fonctionne.
Zariski's main theoremIn algebraic geometry, Zariski's main theorem, proved by , is a statement about the structure of birational morphisms stating roughly that there is only one branch at any normal point of a variety. It is the special case of Zariski's connectedness theorem when the two varieties are birational. Zariski's main theorem can be stated in several ways which at first sight seem to be quite different, but are in fact deeply related.
Quasi-finite morphismIn algebraic geometry, a branch of mathematics, a morphism f : X → Y of schemes is quasi-finite if it is of finite type and satisfies any of the following equivalent conditions: Every point x of X is isolated in its fiber f−1(f(x)). In other words, every fiber is a discrete (hence finite) set. For every point x of X, the scheme f−1(f(x)) = X ×YSpec κ(f(x)) is a finite κ(f(x)) scheme. (Here κ(p) is the residue field at a point p.) For every point x of X, is finitely generated over .
Schéma noethérienEn géométrie algébrique, les schémas noethériens sont aux schémas ce que les anneaux noethériens sont aux anneaux commutatifs. Ce sont les schémas qui possèdent un certain nombre de propriétés de finitude. De nombreux résultats fondamentaux en géométrie algébrique sont montrés dans le cadre des schémas noethériens. Il est généralement considéré comme raisonnable de travailler dans la catégorie des schémas noethériens. Un schéma affine Spec A est noethérien si A est un anneau noethérien.
Nagata's compactification theoremIn algebraic geometry, Nagata's compactification theorem, introduced by , implies that every abstract variety can be embedded in a complete variety, and more generally shows that a separated and finite type morphism to a Noetherian scheme S can be factored into an open immersion followed by a proper morphism. Nagata's original proof used the older terminology of Zariski–Riemann spaces and valuation theory, which sometimes made it hard to follow.
Fiber product of schemesIn mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. The of schemes is a broad setting for algebraic geometry.