In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugate on each entry (the complex conjugate of being , for real numbers and ). It is often denoted as or
or
and very commonly in physics as .
For real matrices, the conjugate transpose is just the transpose, .
The conjugate transpose of an matrix is formally defined by
where the subscript denotes the -th entry, for and , and the overbar denotes a scalar complex conjugate.
This definition can also be written as
where denotes the transpose and denotes the matrix with complex conjugated entries.
Other names for the conjugate transpose of a matrix are Hermitian conjugate, adjoint matrix or transjugate. The conjugate transpose of a matrix can be denoted by any of these symbols:
commonly used in linear algebra
commonly used in linear algebra
(sometimes pronounced as A dagger), commonly used in quantum mechanics
although this symbol is more commonly used for the Moore–Penrose pseudoinverse
In some contexts, denotes the matrix with only complex conjugated entries and no transposition.
Suppose we want to calculate the conjugate transpose of the following matrix .
We first transpose the matrix:
Then we conjugate every entry of the matrix:
A square matrix with entries is called
Hermitian or self-adjoint if ; i.e., .
Skew Hermitian or antihermitian if ; i.e., .
Normal if .
Unitary if , equivalently , equivalently .
Even if is not square, the two matrices and are both Hermitian and in fact positive semi-definite matrices.
The conjugate transpose "adjoint" matrix should not be confused with the adjugate, , which is also sometimes called adjoint.
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself.
The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by real matrices, obeying matrix addition and multiplication:
That is, denoting each complex number by the real matrix of the linear transformation on the Argand diagram (viewed as the real vector space ), affected by complex -multiplication on .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The studio focusses on contextual imaginary. Developing narratives, inspired both by the site and by the student's imagination leads to a theme sustaining the project. The narrative helps the student
In the design studio, we take a critical look at aesthetically neglected and mono-functional industrial zones. For these places, we develop new types of mixed-use hybrid buildings that enrich and tran
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
En mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projecti ...
CELL PRESS2023
The development of a sequential copper-catalyzed oxy-alkynylation/intramolecular [4+2] cycloaddition of allenes and arenes was investigated at first. This one-pot protocol allowed the construction of complex polycylic architectures with high efficiency fro ...
EPFL2021
In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1- ...