En mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point. On associe en général le plan complexe à un repère orthonormé direct. Dans un tel repère, tout point M est l'image d'un unique nombre complexe z qui est appelé affixe de cet unique point (le genre du nom affixe est discuté : le dictionnaire de l'Académie française le renseigne comme masculin, les dictionnaires commerciaux l'annoncent comme féminin) : on note M(z). Pour tout nombre complexe z tel que z=a+ ib où a et b sont des réels, on a la relation . On peut ainsi dire que la partie réelle de z est l'abscisse de M et que la partie imaginaire de z en est son ordonnée. D'après cette égalité, tous les points de l'axe sont tels que la partie imaginaire de leur affixe est nulle : leur affixe est donc un nombre réel. En conséquence, on appelle l'axe axe des réels. De la même façon, tous les points de l'axe sont tels que la partie réelle de leur affixe est nulle : leur affixe est donc un nombre imaginaire pur. En conséquence, on appelle l'axe axe des imaginaires purs. (a ; b) sont les coordonnées cartésiennes du point M, unique représentant du nombre z=a+ ib dans le plan complexe. On peut aussi écrire z avec les coordonnées polaires (r ; θ) du point M, ce qui correspond à l'écriture exponentielle z=r e. Dans ce cas, r est le module du nombre z et θ est un de ses arguments (modulo 2π). La somme de deux vecteurs correspond à la somme de leurs affixes. Ainsi, la translation d'un vecteur donné correspond à l'addition de son affixe. Une rotation d'un angle θ autour de l'origine correspond à la multiplication de l'affixe par le nombre e, qui est un nombre complexe de module 1.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-207(c): Analysis IV (for EL, GM, MX)
This course serves as an introduction to the theory of complex analysis, Fourier series and Fourier transforms, the Laplace transform, with applications to the theory of ordinary and partial different
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
EE-205: Signals and systems (for EL)
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
Afficher plus
Séances de cours associées (29)
Nombres de complexes : Opérations et propriétés
Explore les nombres complexes, y compris le module, la conjugaison et la formule Euler.
Région de convergence : Pôle unique
Couvre le concept de Région de Convergence pour les signaux à pôles simples.
Région de convergence (ROC)
Explique le concept de région de convergence (ROC) dans le traitement du signal en mettant l'accent sur des pôles uniques à valeur réelle et des critères de convergence.
Afficher plus
Publications associées (32)
Concepts associés (32)
Fonction holomorphe
vignette|Une grille et son image par f d'une fonction holomorphe. En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.
Nombre réel
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Unité imaginaire
En mathématiques, l’unité imaginaire est un nombre complexe, noté (parfois en physique afin de ne pas le confondre avec la notation de l'intensité électrique), dont le carré vaut –1. Ses multiples par des nombres réels constituent les nombres imaginaires purs. L'appellation d'« imaginaire » est due à René Descartes et celle d'« unité imaginaire » à Carl Friedrich Gauss. Sans avoir disparu, cette appellation n'est pas d'un usage très généralisé chez les mathématiciens, qui se contentent souvent de parler du nombre i.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.