Modern integrated circuits are tiny yet incredibly complex technological artifacts, composed of millions and billions of individual structures working in unison.
Managing their complexity and facilitating their design drove part of the co-evolution of mode ...
Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
A motif is a frequently occurring subgraph of a given directed or undirected graph G (Milo et al.). Motifs capture higher order organizational structure of G beyond edge relationships, and, therefore, have found wide applications such as in graph clusterin ...
Cut and spectral sparsification of graphs have numerous applications, including e.g. speeding up algorithms for cuts and Laplacian solvers. These powerful notions have recently been extended to hypergraphs, which are much richer and may offer new applicati ...
This paper is devoted to the distributed complexity of finding an approximation of the maximum cut (MAXCUT) in graphs. A classical algorithm consists in letting each vertex choose its side of the cut uniformly at random. This does not require any communica ...
A sparsifier of a graph G (Bencztir and Karger; Spielman and Teng) is a sparse weighted subgraph (G) over tilde that approximately retains the same cut structure of G. For general graphs, non-trivial sparsification is possible only by using weighted graphs ...
Various forms of real-world data, such as social, financial, and biological networks, can be
represented using graphs. An efficient method of analysing this type of data is to extract
subgraph patterns, such as cliques, cycles, and motifs, from graphs. For ...
We consider the problem of estimating the value of MAX-CUT in a graph in the streaming model of computation. At one extreme, there is a trivial 2-approximation for this problem that uses only O(log n) space, namely, count the number of edges and output hal ...
Learning set functions is a key challenge arising in many domains, ranging from sketching graphs to black-box optimization with discrete parameters. In this paper we consider the problem of efficiently learning set functions that are defined over a ground ...
This paper studies the expressive power of graph neural networks falling within the message-passing framework (GNNmp). Two results are presented. First, GNNmp are shown to be Turing universal under sufficient conditions on their depth, width, node attribut ...