Concepts associés (9)
Formule de Mollweide
Les formules de Mollweide, nommées d'après le mathématicien et astronome prussien (1774-1825), sont les identités trigonométriques suivantes en géométrie du triangle : où (cf. figure ci-contre) a, b et c désignent les longueurs des côtés d'un triangle ABC et α, β et γ les mesures des angles opposés. La loi des tangentes en est un corollaire immédiat, compte tenu du fait que γ/2 est complémentaire de α + β/2 (donc le cosinus de l'un est égal au sinus de l'autre).
Loi des cotangentes
En géométrie du triangle, la loi des cotangentes est une relation entre les longueurs a, b et c des côtés d'un triangle et les cotangentes de ses angles moitiés α/2, β/2 et γ/2 : où p = a + b + c/2 désigne le demi-périmètre et r le rayon du cercle inscrit. Découpons le triangle (cf. Fig. 2) en six triangles rectangles, symétriques deux par deux par rapport aux bissectrices et de côtés (AM, r, x), (BM, r, y) et (CM, r, z), avec x + y = c, y + z = a et z + x = b.
Loi des sinus
En trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés. Elle permet, connaissant deux angles et un côté, de calculer la longueur des autres côtés. Il existe une formule des sinus de présentation analogue en trigonométrie sphérique. Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du et, pour la forme plane, par Nasir al-Din al-Tusi au début du .
Spherical law of cosines
In spherical trigonometry, the law of cosines (also called the cosine rule for sides) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right).
Loi des tangentes
En géométrie du triangle, la loi des tangentes est une relation entre la longueur de deux côtés d'un triangle et la mesure de deux de ses angles. On considère un triangle quelconque ABC, représenté sur la Fig. 1 ci-contre, où les angles sont désignés par α, β, γ et les côtés opposés aux angles par les lettres correspondantes a, b et c. Alors, La loi des tangentes est un corollaire immédiat des formules de Mollweide.
Trigonométrie sphérique
La trigonométrie sphérique est un ensemble de relations analogues à celles de la trigonométrie euclidienne mais portant sur les angles et distances repérés sur une sphère. La figure de base est le triangle sphérique, délimité non plus par des segments de droites mais par des arcs de demi-grands cercles de cette sphère. Les règles habituelles de la trigonométrie euclidienne ne sont pas applicables ; par exemple la somme des angles d'un triangle situé sur une sphère, s'ils sont exprimés en degrés, est supérieure à 180 degrés.
Loi des cosinus
En mathématiques, la loi des cosinus est un théorème de géométrie couramment utilisé en trigonométrie, qui relie dans un triangle la longueur d'un côté à celles des deux autres et au cosinus de l'angle formé par ces deux côtés. Cette loi s'exprime de façon analogue en géométrie plane, sphérique ou hyperbolique. Cette loi généralise le théorème de Pythagore. Les Éléments d'Euclide contenaient déjà une approche géométrique de la généralisation du théorème de Pythagore dans deux cas particuliers : ceux d'un triangle obtusangle et d'un triangle acutangle.
Sine and cosine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
Trigonométrie
vignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.