Concept

Extremum estimator

Résumé
In statistics and econometrics, extremum estimators are a wide class of estimators for parametric models that are calculated through maximization (or minimization) of a certain objective function, which depends on the data. The general theory of extremum estimators was developed by . An estimator is called an extremum estimator, if there is an objective function such that where Θ is the parameter space. Sometimes a slightly weaker definition is given: where op(1) is the variable converging in probability to zero. With this modification doesn't have to be the exact maximizer of the objective function, just be sufficiently close to it. The theory of extremum estimators does not specify what the objective function should be. There are various types of objective functions suitable for different models, and this framework allows us to analyse the theoretical properties of such estimators from a unified perspective. The theory only specifies the properties that the objective function has to possess, and so selecting a particular objective function only requires verifying that those properties are satisfied. If the parameter space Θ is compact and there is a limiting function Q0(θ) such that: converges to Q0(θ) in probability uniformly over Θ, and the function Q0(θ) is continuous and has a unique maximum at θ = θ0 then is consistent for θ0. The uniform convergence in probability of means that The requirement for Θ to be compact can be replaced with a weaker assumption that the maximum of Q0 was well-separated, that is there should not exist any points θ that are distant from θ0 but such that Q0(θ) were close to Q0(θ0). Formally, it means that for any sequence {θi} such that Q0(θi) → Q0(θ0), it should be true that θi → θ0. Assuming that consistency has been established and the derivatives of the sample satisfy some other conditions, the extremum estimator converges to an asymptotically Normal distribution.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
CIVIL-606: Inference for large-scale time series with application to sensor fusion
Large-scale time series analysis is performed by a new statistical tool that is superior to other estimators of complex state-space models. The identified stochastic dependences can be used for sensor
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
MATH-336: Randomization and causation
This course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
Afficher plus