En statistique et en économétrie, la méthode des moments généralisée (en anglais generalized method of moments ou GMM) est une méthode générique pour estimer les paramètres d'un modèle statistique qui s'appuie sur un certain nombre de conditions sur les moments d'un modèle. Habituellement, cette méthode est utilisée dans un contexte de modèle semi-paramétrique, où le paramètre étudié est de dimension finie, alors que la forme complète de la fonction de distribution des données peut ne pas être connue (de ce fait, l'estimation par maximum de vraisemblance n'est pas applicable). Cette méthode requiert la spécification d'un certain nombre de conditions de moments sur le modèle. Ces conditions sont exprimées en fonction des paramètres du modèle et des données, de façon que leur espérance soit nulle lorsque les paramètres sont à leur vraie valeur. Appliquer la méthode des moments généralisée revient à minimiser une certaine norme sur les moyennes de ces fonctions calculées sur les données disponibles. Les estimateurs MGM sont convergents, asymptotiquement normaux et efficaces dans la classe de tous les estimateurs qui n'utilisent pas d'information supplémentaire en dehors de celle contenue dans les conditions de moment. La méthode est une extension de la méthode des moments. Elle a été développée par Lars Peter Hansen en 1982 dans un article intitulé « », ce qui lui a valu en partie le Prix Nobel d’économie en 2013. Soit une base de données contenant N observations {Yi} i=1..N, dans laquelle chaque observation Yi est un vecteur aléatoire de dimension n. On suppose que les données obéissent à un modèle statistique défini par un paramètre inconnu θ ∈ Θ. On cherche à estimer la vraie valeur du paramètre, notée θ0, à partir des observations disponibles. La méthode des moments généralisée fait l’hypothèse que les données {Yi} sont générées selon un processus stochastique ergodique (faiblement) stationnaire. Le cas où les données sont des variables indépendantes et identiquement distribuées est un cas particulier de cette hypothèse plus générale.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
EE-612: Fundamentals in statistical pattern recognition
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
EE-613: Machine Learning for Engineers
The objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
FIN-403: Econometrics
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
Afficher plus
Concepts associés (11)
Extremum estimator
In statistics and econometrics, extremum estimators are a wide class of estimators for parametric models that are calculated through maximization (or minimization) of a certain objective function, which depends on the data. The general theory of extremum estimators was developed by . An estimator is called an extremum estimator, if there is an objective function such that where Θ is the parameter space. Sometimes a slightly weaker definition is given: where op(1) is the variable converging in probability to zero.
Point estimation
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Orthogonalité
En géométrie classique, l'orthogonalité est une propriété liée à l'existence d'un angle droit (orthos = droit, gônia = angle). Dans l'espace, deux droites sont orthogonales si elles sont chacune parallèles à des droites se coupant en angle droit ; deux perpendiculaires étant deux droites orthogonales et sécantes. Une droite est orthogonale à un plan si elle est orthogonale aux droites du plan. On parle de vecteurs orthogonaux pour des vecteurs directeurs de droites orthogonales et de segments orthogonaux pour des segments portés par des droites orthogonales.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.