Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore l'ergodicité géométrique dans les chaînes de Markov et le biais et la variance des estimateurs, en mettant en évidence la quantification des pertes d'efficacité.
Couvre les modèles d'apprentissage statistique, la minimisation des risques et la minimisation empirique des risques avec des exemples d'estimateurs de probabilité maximale.
Explore une régression robuste dans l'analyse des données génomiques, en mettant l'accent sur la pondération des résidus importants pour une meilleure précision des estimations et des mesures d'évaluation de la qualité telles que NUSE et RLE.
Couvre le concept d'estimation ponctuelle dans les statistiques, en se concentrant sur les méthodes d'estimation des paramètres inconnus à partir d'un échantillon donné.
Explore l'estimation statistique, comparant les estimateurs basés sur la moyenne et la variance, et plongeant dans l'erreur carrée moyenne et Cramér-Rao lié.