Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'apprentissage non supervisé axé sur les méthodes de regroupement et les défis rencontrés dans les algorithmes de regroupement comme K-means et DBSCAN.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.
Couvre l'évaluation des méthodes de regroupement, y compris le regroupement des moyennes K et l'utilisation de mesures d'évaluation pour déterminer le nombre optimal de regroupements.
Explique les étapes d'affectation et de mise à jour dans le clustering K-means, la minimisation des fonctions de perte et les effets métriques de distance.
Introduit des algorithmes de traçage des connaissances bayésiennes, de modélisation des facteurs additifs et de regroupement pour tracer les connaissances des étudiants et découvrir les structures.