En algèbre générale, un corps ordonné est la donnée d'un corps commutatif (K, +, ×), muni d'une relation d'ordre (notée ≤ dans l'article) compatible avec la structure de corps. Dans tout l'article, on note naturellement ≥ la relation d'ordre réciproque de ≤, et l'on note < et > les relations d'ordre strict respectivement associées à ≤ et ≥. On note par ailleurs 0 l'élément neutre de l'addition et 1 celui de la multiplication. On note le plus souvent xy le produit de deux éléments x et y de K. Enfin, on note x–1 l'inverse d'un élément x non nul de K. La majeure partie des résultats énoncés (ceux ne faisant pas intervenir la notion d'inverse) peut s'étendre aux anneaux commutatifs. Plus précisément, avec les notations précédentes, on dit que la relation d'ordre ≤ est compatible avec la structure de corps de K si les deux conditions suivantes sont réunies. Le groupe additif (K,+) est un groupe ordonné par la relation d'ordre ≤ (c'est-à-dire que celle-ci est compatible avec l'addition). On a, pour tous éléments x et y du corps tels que x ≥ 0 et y ≥ 0, l'inégalité xy ≥ 0 (la relation d'ordre est compatible avec la multiplication). Par commodité, on dira par la suite qu'un élément x de K est positif si l'on a x ≥ 0, et qu'il est négatif si l'on a x ≤ 0 (on remarquera que, par antisymétrie de la relation d'ordre ≤, 0 est l'unique élément du corps à la fois positif et négatif). Les corps Q des rationnels et R des réels, munis de la relation d'ordre habituelle, sont des corps ordonnés. On dispose d'abord des propriétés liées à la compatibilité de l'addition avec la relation d'ordre (voir l'article groupe ordonné pour leur démonstration, avec d'autres notations). Addition membre à membre d'inégalités :retrait|si x ≤ y et x' ≤ y' alors x + x' ≤ y + y. Passage à l'opposé dans une inégalité en changeant le sens : On dispose par ailleurs de propriétés liées à la compatibilité de la multiplication avec la relation d'ordre. Règle des signes : si x ≤ 0 et y ≤ 0 alors xy ≥ 0 ; si x ≤ 0 et y ≥ 0 alors xy ≤ 0 ; si x ≥ 0 et y ≤ 0 alors xy ≤ 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
Publications associées (33)
Concepts associés (20)
Nombre réel
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Analyse non standard
En mathématiques, et plus précisément en analyse, l'analyse non standard est un ensemble d'outils développés depuis 1960 afin de traiter la notion d'infiniment petit de manière rigoureuse. Pour cela, une nouvelle notion est introduite, celle d'objet standard (s'opposant à celle d'objet non standard), ou plus généralement de modèle standard ou de modèle non standard. Cela permet de présenter les principaux résultats de l'analyse sous une forme plus intuitive que celle exposée traditionnellement depuis le .
Nombre hyperréel
vignette|Représentation des infinitésimaux (ε) et infinis (ω) sur la droite des nombres hyperréels (1/ε = ω)|520x520px En mathématiques, le corps ordonné des nombres hyperréels constitue une extension, notée *R, des nombres réels usuels, permettant de donner un sens rigoureux aux notions de quantité infiniment petite ou infiniment grande. On peut éviter alors l'emploi des passages à la limite et des expressions conditionnées par une valeur ε « aussi petite que l’on veut ».
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.