Résumé
En mathématiques, une fonction symétrique est une fonction invariante par permutation de ses variables. Le cas le plus fréquent est celui d'une fonction polynomiale symétrique, donnée par un polynôme symétrique. Une fonction en n variables est symétrique si pour toute permutation s de l'ensemble d'indices {1, ... ,n}, l'égalité suivante est vérifiée : Pour n = 1, toute fonction est symétrique. Pour n = 2, la fonction est symétrique, alors que la fonction ne l'est pas. Une équation est une équation symétrique lorsque la fonction est symétrique. Les fonctions et sont symétriques. Le discriminant en trois variables est aussi symétrique. Un exemple de fonction symétrique, toujours en trois variables, qui n'est pas un polynôme est Pour vérifier qu'une fonction est symétrique, il n'est pas nécessaire de tester qu'elle est invariante pour chacune des n! permutations de ses arguments. Il suffit de choisir un ensemble de permutations qui engendre le groupe symétrique, et l'on a plusieurs choix pour de tels ensembles. Comme toute permutation est une composée de transpositions de la forme , une fonction est symétrique dès qu'elle reste inchangée par l'échange de deux variables arbitraires et , donc lorsque pour tout avec . Ceci réduit le nombre de permutations à tester à . Comme toute transposition s'exprime aussi comme une composée de transpositions de valeurs consécutives de la forme , il suffit de considérer des variables consécutives et . Pour la symétrie, il suffit que les n – 1 égalités valent pour . On peut aussi bien considérer les transpositions de la forme . Une fonction est alors symétrique lorsque l'on peut échanger la première et la -ème variable sans changer la valeur de la fonction, en d'autres termes, lorsque pour . À la place de la première variable, on peut choisir toute autre variable. Un ensemble générateur du groupe symétrique est formé des deux permutations et . Il suffit donc, pour qu'une fonction soit symétrique, qu'elle vérifie seulement les deux égalités et La paire formée de et peut aussi être remplacée par n'importe quelle permutation circulaire et toute transposition d'éléments consécutifs dans ce cycle.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.