Introduit les bases du NLP moderne, couvrant l'intégration de mots, les modèles neuraux, et les tâches comme l'étiquetage de séquence et la génération de texte.
Couvre les sujets avancés dans les modèles linéaires généralisés, en mettant l'accent sur les fonctions de liaison, les distributions d'erreurs et l'interprétation des modèles.
Explore les dangers des « grands » modèles, des questions de multicollinéarité et de l'analyse de l'ajustement des modèles dans les statistiques pour la science des données.
Explore la théorie des modèles linéaires généralisés, y compris la logistique et la régression de Poisson, lévaluation des modèles et les tests de coefficient.