L'acide polylactique (polylactic acid, abrégé en PLA) est un polymère biodégradable en compostage industriel (à une température supérieure à ). Homopolymère biosourcé, le PLA peut être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, le PLA est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique. Ce procédé conduit à des polymères avec des masses molaires relativement faibles. Afin de produire un PLA avec des masses molaires plus élevées, le PLA produit par condensation de l'acide lactique est dépolymérisé, produisant du , qui est à son tour polymérisé par ouverture de cycle. vignette|gauche|Synthèse de polylactide. Le PLA est donc l’un de ces polymères, dans lequel les longues molécules filiformes sont construites par la réaction d’un groupe acide d’une molécule d’acide lactique sur le groupe hydroxyle d’une autre pour donner une jonction ester. Dans le corps, la réaction se fait en sens inverse et l’acide lactique ainsi libéré est incorporé dans le processus métabolique normal. On obtient un polymère plus résistant en utilisant l’acide glycolique, soit seul, soit combiné à l’acide lactique. Il est utilisé dans l'emballage alimentaire (œufs, eau minérale, fruits et légumes), pour remplacer les sacs et cabas en plastiques jusqu'ici distribués dans les commerces, ou dans la fabrication de très nombreux objets injectés, extrudés ou thermoformés. Il est utilisé en chirurgie où les sutures sont réalisées avec des polymères biodégradables qui sont décomposés par réaction avec l’eau ou sous l’action d’enzymes. Il est également utilisé pour les nouveaux essais de stent biodégradable. C'est l'un des principaux matériaux utilisés par les imprimantes 3D, avant le PETG ou le nylon.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
MSE-431: Physical chemistry of polymeric materials
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
MSE-437: Polymer chemistry and macromolecular engineering
Know modern methods of polymer synthesis. Understand how parameters, which determine polymer structure and properties, such as molecular weight, molecular weight distribution, topology, microstructure
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.