Polylactic acid, also known as poly(lactic acid) or polylactide (PLA), is a thermoplastic polyester with backbone formula (C3H4O2)n or [–C(CH3)HC(=O)O–]n, formally obtained by condensation of lactic acid C(CH3)(OH)HCOOH with loss of water (hence its name). It can also be prepared by ring-opening polymerization of lactide [–C(CH3)HC(=O)O–]2, the cyclic dimer of the basic repeating unit.
PLA has become a popular material due to it being economically produced from renewable resources. In 2021, PLA had the highest consumption volume of any bioplastic of the world, although it is still not a commodity polymer. Its widespread application has been hindered by numerous physical and processing shortcomings. PLA is the most widely used plastic filament material in FDM 3D printing. Its low melting point, high strength, low thermal expansion, and good layer adhesion, although it possesses poor heat resistance unless annealed.
Although the name "polylactic acid" is widely used, it does not comply with IUPAC standard nomenclature, which is "poly(lactic acid)". The name "polylactic acid" is potentially ambiguous or confusing, because PLA is not a polyacid (polyelectrolyte), but rather a polyester.
The monomer is typically made from fermented plant starch such as from corn, cassava, sugarcane or sugar beet pulp.
Several industrial routes afford usable (i.e. high molecular weight) PLA. Two main monomers are used: lactic acid, and the cyclic di-ester, lactide. The most common route to PLA is the ring-opening polymerization of lactide with various metal catalysts (typically tin octoate) in solution or as a suspension. The metal-catalyzed reaction tends to cause racemization of the PLA, reducing its stereoregularity compared to the starting material (usually corn starch).
The direct condensation of lactic acid monomers can also be used to produce PLA. This process needs to be carried out at less than 200 °C; above that temperature, the entropically favored lactide monomer is generated. This reaction generates one equivalent of water for every condensation (esterification) step.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Know modern methods of polymer synthesis. Understand how parameters, which determine polymer structure and properties, such as molecular weight, molecular weight distribution, topology, microstructure
Bioplastics are plastic materials produced from renewable biomass sources, such as vegetable fats and oils, corn starch, straw, woodchips, sawdust, recycled food waste, etc. Some bioplastics are obtained by processing directly from natural biopolymers including polysaccharides (e.g., starch, cellulose, chitosan, and alginate) and proteins (e.g., soy protein, gluten, and gelatin), while others are chemically synthesised from sugar derivatives (e.g.
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems.
Corn starch, maize starch, or cornflour (British English) is the starch derived from corn (maize) grain. The starch is obtained from the endosperm of the kernel. Corn starch is a common food ingredient, often used to thicken sauces or soups, and to make corn syrup and other sugars. Corn starch is versatile, easily modified, and finds many uses in industry such as adhesives, in paper products, as an anti-sticking agent, and textile manufacturing. It has medical uses as well, such as to supply glucose for people with glycogen storage disease.
After decades of technological advancements, high-speed atomic force microscopy (HS-AFM) has emerged as a powerful technique for visualizing dynamic processes. At the nanoscale, the AFM provides valuable insights into the sample by sensing minute interacti ...
Enhancing the surface charge density and reducing the output impedance via innovative techniques are essential to accelerate the commercialization of triboelectric nanogenerators (TENGs). However, methods for increasing output performance have numerous lim ...
Transient electronics have emerged as a promising class of devices, capable of breaking down without harmful side effects to their environment. They have tremendous potential as bioresorbable electronics for temporary applications in the human body, and as ...