Concepts associés (67)
Data transformation (statistics)
In statistics, data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point zi is replaced with the transformed value yi = f(zi), where f is a function. Transforms are usually applied so that the data appear to more closely meet the assumptions of a statistical inference procedure that is to be applied, or to improve the interpretability or appearance of graphs. Nearly always, the function that is used to transform the data is invertible, and generally is continuous.
Fonction quantile
En probabilités, la fonction quantile est une fonction qui définit les quantiles. Soit X une variable aléatoire et F sa fonction de répartition, la fonction quantile est définie par pour toute valeur de , la notation désignant l’inverse généralisé à gauche de . Si F est une fonction strictement croissante et continue, alors est l'unique valeur de telle que . correspond alors à la fonction réciproque de , notée . En revanche, pour les lois discrètes, les fonctions de répartition sont toutes en escalier, d'où l'intérêt de la définition précédente.
Loi multinomiale
En théorie des probabilités, la loi multinomiale (aussi appelée distribution polynomiale) généralise la loi binomiale. Tandis que la loi binomiale concerne le nombre de succès lors d'une série de n épreuves de Bernoulli indépendantes, comme dans le jeu de pile ou face, la loi multinomiale ne se restreint pas aux épreuves comportant deux issues. La loi multinomiale s'applique par exemple au cas de n jets d'un dé à six faces : l'apparition du seul peut être modélisé par une loi binomiale alors que l'ensemble des apparitions des à 6 est modélisé par une loi multinomiale.
Processus de Poisson composé
Un processus de Poisson composé, nommé d'après le mathématicien français Siméon Denis Poisson, est un processus stochastique en temps continu à droite limité à gauche (Càdlàg). C'est en particulier un processus de Lévy. Un processus de Poisson composé est un processus aléatoire indexé par le temps qui s’écrit où est un processus de Poisson et est une suite de variables aléatoires indépendantes et identiquement distribuées et indépendantes de . Comme tout processus de Lévy, le processus de Poisson composé est à accroissements indépendants et à accroissements stationnaires.
Infinite divisibility (probability)
In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function. More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, .
Statistique exhaustive
Les statistiques exhaustives sont liées à la notion d'information et en particulier à l'information de Fisher. Elles servent entre autres à améliorer des estimateurs grâce à l'usage du théorème de Rao-Blackwell et du théorème de Lehmann-Scheffé. Intuitivement, parler d'une statistique exhaustive revient à dire que cette statistique contient l'ensemble de l'information sur le(s) paramètre(s) de la loi de probabilité. Soit un vecteur d'observation de taille , dont les composantes sont indépendantes et identiquement distribués (iid).
Exponential dispersion model
In probability and statistics, the class of exponential dispersion models (EDM) is a set of probability distributions that represents a generalisation of the natural exponential family. Exponential dispersion models play an important role in statistical theory, in particular in generalized linear models because they have a special structure which enables deductions to be made about appropriate statistical inference. There are two versions to formulate an exponential dispersion model.
Minimum-variance unbiased estimator
In statistics a minimum-variance unbiased estimator (MVUE) or uniformly minimum-variance unbiased estimator (UMVUE) is an unbiased estimator that has lower variance than any other unbiased estimator for all possible values of the parameter. For practical statistics problems, it is important to determine the MVUE if one exists, since less-than-optimal procedures would naturally be avoided, other things being equal. This has led to substantial development of statistical theory related to the problem of optimal estimation.
Matrice aléatoire
En théorie des probabilités et en physique mathématique, une matrice aléatoire est une matrice dont les éléments sont des variables aléatoires. La théorie des matrices aléatoires a pour objectif de comprendre certaines propriétés de ces matrices, comme leur norme d'opérateur, leurs valeurs propres ou leurs valeurs singulières. Face à la complexité croissante des spectres nucléaires observés expérimentalement dans les années 1950, Wigner a suggéré de remplacer l'opérateur hamiltonien du noyau par une matrice aléatoire.
Index of dispersion
In probability theory and statistics, the index of dispersion, dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard statistical model.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.