Contraction des longueursEn relativité restreinte, la contraction des longueurs désigne la loi suivant laquelle la mesure de la longueur d'un objet en mouvement est diminuée par rapport à la mesure faite dans le référentiel où l'objet est immobile, du fait, notamment, de la relativité de la simultanéité d'un référentiel à l'autre. Toutefois, seule la mesure de la longueur parallèle à la vitesse est contractée, les mesures perpendiculaires à la vitesse ne changent pas d'un référentiel à l'autre. En relativité générale, une contraction des longueurs est aussi prédite.
Modèle de l'hyperboloïdeEn géométrie, le modèle de l'hyperboloïde, également dénommé modèle de Minkowski ou modèle de Lorentz (d'après les noms de Hermann Minkowski et Hendrik Lorentz), est un modèle de géométrie hyperbolique dans un espace de Minkowski de dimension n. Ce modèle d'espace hyperbolique est étroitement lié au modèle de Klein ou au disque de Poincaré. Espace de Minkowski Si x = (x0, x1, ...
Système de coordonnées curvilignesUn système de coordonnées curvilignes est une façon d'attribuer à chaque point du plan ou de l'espace un ensemble de nombres. Soit un point de l'espace dont les coordonnées sont notées . Un système de coordonnées quelconques est obtenu en se donnant trois fonctions arbitraires des paramètres , telles que ; ces fonctions sont choisies le plus souvent continues, et même différentiables. Les points correspondant à deux des trois coordonnées constantes décrivent une ligne de coordonnées.
Théorème de plongement de NashEn géométrie différentielle, le théorème de plongement de Nash, dû au mathématicien John Forbes Nash, affirme que toute variété riemannienne peut être plongée de manière isométrique dans un espace euclidien. « De manière isométrique » veut dire « conservant la longueur des courbes ». Une conséquence de ce théorème est que toute variété riemannienne peut être vue comme une sous-variété d'un espace euclidien. Il existe deux théorèmes de plongement de Nash : Le premier (1954), portant sur les variétés de classe C1.
Invariant (physics)In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment. Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants.
Relativity of simultaneityIn physics, the relativity of simultaneity is the concept that distant simultaneity – whether two spatially separated events occur at the same time – is not absolute, but depends on the observer's reference frame. This possibility was raised by mathematician Henri Poincaré in 1900, and thereafter became a central idea in the special theory of relativity. According to the special theory of relativity introduced by Albert Einstein, it is impossible to say in an absolute sense that two distinct events occur at the same time if those events are separated in space.
Pseudosphèrethumb|right|La pseudosphère étudiée par Eugenio Beltrami En géométrie, le terme de pseudosphère est utilisé pour décrire diverses surfaces dont la courbure de Gauss est constante et négative. Selon le contexte, il peut se référer soit à une surface théorique de courbure négative (une variété riemannienne), soit à une surface effectivement réalisée de l'espace, telle qu'une tractricoïde. Dans son acception la plus générale, une pseudosphère de rayon R est une surface (complète et simplement connexe) de courbure totale en tout point égale à , par analogie à la sphère de rayon R dont la courbure est .
Raising and lowering indicesIn mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions. Mathematically vectors are elements of a vector space over a field , and for use in physics is usually defined with or . Concretely, if the dimension of is finite, then, after making a choice of basis, we can view such vector spaces as or . The dual space is the space of linear functionals mapping .
Cône de lumièreredresse=1.25|vignette|Le cône de lumière centré sur un événement. En physique, le cône de lumière est une notion fondamentale de la théorie de la relativité, permettant à partir d'un événement la distinction entre les événements passés, les événements futurs et les événements inaccessibles (dans le passé comme dans le futur). Le cône de lumière est ainsi désigné à la suite de Hermann Minkowski (-). Mathématiquement, un cône de lumière est un .
Introduction aux mathématiques de la relativité généraleLes mathématiques de la relativité générale sont complexes. Dans la théorie du mouvement de Newton, la longueur d'un objet et la vitesse à laquelle le temps s'écoule restent constantes même lorsque l'objet accélère. Cela signifie que de nombreux problèmes de mécanique newtonienne peuvent être résolus uniquement en utilisant l'algèbre. Mais en relativité, la longueur d'un objet et la vitesse à laquelle le temps s'écoule changent sensiblement à mesure que la vitesse de l'objet se rapproche de la vitesse de la lumière.