In mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems. Anosov diffeomorphisms were introduced by Dmitri Victorovich Anosov, who proved that their behaviour was in an appropriate sense generic (when they exist at all). Three closely related definitions must be distinguished: If a differentiable map f on M has a hyperbolic structure on the tangent bundle, then it is called an Anosov map. Examples include the Bernoulli map, and Arnold's cat map. If the map is a diffeomorphism, then it is called an Anosov diffeomorphism. If a flow on a manifold splits the tangent bundle into three invariant subbundles, with one subbundle that is exponentially contracting, and one that is exponentially expanding, and a third, non-expanding, non-contracting one-dimensional sub-bundle (spanned by the flow direction), then the flow is called an Anosov flow. A classical example of Anosov diffeomorphism is the Arnold's cat map. Anosov proved that Anosov diffeomorphisms are structurally stable and form an open subset of mappings (flows) with the C1 topology. Not every manifold admits an Anosov diffeomorphism; for example, there are no such diffeomorphisms on the sphere . The simplest examples of compact manifolds admitting them are the tori: they admit the so-called linear Anosov diffeomorphisms, which are isomorphisms having no eigenvalue of modulus 1. It was proved that any other Anosov diffeomorphism on a torus is topologically conjugate to one of this kind. The problem of classifying manifolds that admit Anosov diffeomorphisms turned out to be very difficult, and still has no answer for dimension over 3. The only known examples are infranilmanifolds, and it is conjectured that they are the only ones. A sufficient condition for transitivity is that all points are nonwandering: .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (12)
Théorie du chaos: Systèmes dynamiques discrets
Explore la théorie du chaos grâce à des systèmes dynamiques discrets et à la carte des chats d'Arnold.
Théorie du chaos : cartes et exposants Lyapunov
Explore les cartes chaotiques, les points fixes, la stabilité et les exposants de Lyapunov dans des systèmes discrets, en soulignant leur rôle dans la détermination du chaos.
Afficher plus
Publications associées (5)

Colline de la Muraz à Nyon – Alternative de densification urbaine par la transposition de préceptes spatiaux japonais

Dans le centre historique de la ville de Nyon, la colline de la Muraz est une fascinante singularité urbaine. Au fil du 20e siècle, elle s’est vue progressivement ceindre d’une véritable muraille bâtie. Cette couronne d’immeubles masque un groupement de ma ...
2022

Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group. II

Martins Bruveris, Martin Bauer

The geodesic distance vanishes on the group of compactly supported diffeomorphisms of a Riemannian manifold of bounded geometry, for the right invariant weak Riemannian metric which is induced by the Sobolev metric of order on the Lie algebra of vector fie ...
Springer Verlag2013

The group of unimodular automorphisms of a principal bundle and the Euler-Yang-Mills equations

Given a principal bundle G hooked right arrow P -> B (each being compact, connected and oriented) and a G-invariant metric h(P) on P which induces a volume form mu(P), we consider the group of all unimodular automorphisms SAut(P, mu(P)) := {phi is an eleme ...
2010
Afficher plus
Concepts associés (3)
Flot (mathématiques)
Le flot, coulée ou encore courant est, en mathématiques, un concept fondamental utilisé en géométrie différentielle. La notion de flot permet notamment de modéliser le déplacement dans le temps des éléments d'un fluide. Pour ce faire, on crée une application α qui, à chaque point x de l'espace concerné par l'écoulement, associe un autre point α(x,t), correspondant à la position qu'aurait une particule du fluide à l'instant t, si elle avait été située en x à l'instant 0. thumb|Flot associé à l'équation différentielle d'un pendule.
Chat d'Arnold
En mathématiques, l'application chat d'Arnold est une certaine bijection du tore vers lui-même. Cette fonction sert à illustrer des comportements chaotiques en théorie des systèmes dynamiques. Elle porte ce nom inhabituel parce que Vladimir Arnold l'a décrite en 1967 en s'aidant du dessin d'un chat. thumb|L'effet de l'opération modulo sur le parallélogramme. On peut repérer les points sur le tore à l'aide de deux coordonnées x et y chacune dans l'intervalle [0, 1], cela revient à « déplier » ce tore pour obtenir un carré.
Système dynamique
En mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.