Concept

Reverse transcription polymerase chain reaction

Résumé
Reverse transcription polymerase chain reaction (RT-PCR) is a laboratory technique combining reverse transcription of RNA into DNA (in this context called complementary DNA or cDNA) and amplification of specific DNA targets using polymerase chain reaction (PCR). It is primarily used to measure the amount of a specific RNA. This is achieved by monitoring the amplification reaction using fluorescence, a technique called real-time PCR or quantitative PCR (qPCR). Combined RT-PCR and qPCR are routinely used for analysis of gene expression and quantification of viral RNA in research and clinical settings. The close association between RT-PCR and qPCR has led to metonymic use of the term qPCR to mean RT-PCR. Such use may be confusing, as RT-PCR can be used without qPCR, for example to enable molecular cloning, sequencing or simple detection of RNA. Conversely, qPCR may be used without RT-PCR, for example to quantify the copy number of a specific piece of DNA. The combined RT-PCR and qPCR technique has been described as quantitative RT-PCR or real-time RT-PCR (sometimes even called quantitative real-time RT-PCR), has been variously abbreviated as qRT-PCR, RT-qPCR, RRT-PCR, and rRT-PCR. In order to avoid confusion, the following abbreviations will be used consistently throughout this article: Not all authors, especially earlier ones, use this convention and the reader should be cautious when following links. RT-PCR has been used to indicate both real-time PCR (qPCR) and reverse transcription PCR (RT-PCR). Since its introduction in 1977, Northern blot has been used extensively for RNA quantification despite its shortcomings: (a) time-consuming technique, (b) requires a large quantity of RNA for detection, and (c) quantitatively inaccurate in the low abundance of RNA content. However, since PCR was invented by Kary Mullis in 1983, RT PCR has since displaced Northern blot as the method of choice for RNA detection and quantification.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.