Espace de Baire (théorie des ensembles)En mathématiques, et plus précisément en topologie générale, l’espace de Baire est le nom donné — d'après René Baire — à l'ensemble de toutes les suites d'entiers, muni d'une certaine topologie. Cet espace est souvent utilisé en théorie descriptive des ensembles, au point que ses éléments sont souvent appelés des « réels ». On le note souvent B, NN, ωω, ou ωω. On appelle espace de Baire, noté NN, le produit cartésien d'un ensemble dénombrable de copies de l'ensemble N des entiers naturels, muni de la topologie produit, où chaque copie de N est munie de la topologie discrète.
Espace polonaisEn mathématiques, un espace métrisable à base dénombrable (ou séparable, cela revient au même pour un espace métrisable) est un espace polonais si sa topologie peut être définie par une distance qui en fait un espace complet. Tout espace compact métrisable, tout sous-espace fermé ou ouvert d'un espace polonais, tout produit dénombrable d'espaces polonais, tout espace de Banach séparable est un espace polonais. Cette terminologie a été introduite par le groupe Bourbaki, dans le volume sur la topologie générale de ses Éléments de mathématique.
Voisinage (mathématiques)En mathématiques, dans un espace topologique, un voisinage d'un point est une partie de l'espace qui contient un ouvert qui comprend ce point. C'est une notion centrale dans la description d'un espace topologique. Par opposition aux voisinages, les ensembles ouverts permettent de définir élégamment des propriétés globales comme la continuité en tout point. En revanche, pour les propriétés locales comme la continuité en un point donné ou la limite, la notion de voisinage (et le formalisme correspondant) est plus adaptée.