Résumé
En mathématiques, un espace métrisable à base dénombrable (ou séparable, cela revient au même pour un espace métrisable) est un espace polonais si sa topologie peut être définie par une distance qui en fait un espace complet. Tout espace compact métrisable, tout sous-espace fermé ou ouvert d'un espace polonais, tout produit dénombrable d'espaces polonais, tout espace de Banach séparable est un espace polonais. Cette terminologie a été introduite par le groupe Bourbaki, dans le volume sur la topologie générale de ses Éléments de mathématique. C'est en fait Roger Godement, qui fut membre du groupe, qui en est à l'origine à la suite de sa proposition en 1949. De son propre aveu c'était, à la fois, humoristique et un hommage aux travaux des mathématiciens polonais dans le domaine de la topologie, notamment Casimir Kuratowski, Alfred Tarski et Wacław Sierpiński. Tout espace localement compact à base dénombrable est polonais (c'est un ouvert dans son compactifié d'Alexandrov) : R ou encore Rd sont des exemples importants d'espaces polonais. L'intervalle ouvert ]0, 1[ est homéomorphe à R donc il est polonais (alors que pour la distance usuelle, qui est la première qu'on envisagerait parmi celles qui définissent sa topologie, il n'est pas complet, puisque non fermé dans R). Il existe cependant de nombreux espaces polonais intéressants dans lesquels tout compact est d'intérieur vide, par exemple les espaces de Banach séparables de dimension infinie (à cause du théorème de Riesz) ou encore l'espace polonais fondamental NN (appelé souvent l'espace de Baire, d'où ambiguïté avec la notion d'espace de Baire) qui, à homéomorphisme près, est le seul espace polonais totalement discontinu dans lequel tout compact est d'intérieur vide. Certains espaces usuels de l'analyse ou de l'analyse fonctionnelle sont polonais, mais d'autres ne le sont pas, comme l'espace de Banach non séparable l. De manière générale, un sous-espace d'un espace polonais est lui-même polonais si et seulement si c'est un Gδ de l'espace, c'est-à-dire une intersection dénombrable d'ouverts (voir Hiérarchie de Borel).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (30)
Mesure de Radon
In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.
Espace de Cantor
En mathématiques, plus précisément en topologie, on appelle espace de Cantor l'espace produit , où est muni de la topologie discrète. C'est un espace compact métrisable à base dénombrable (en fait, pour un espace compact, être métrisable ou être à base dénombrable sont des propriétés équivalentes) et totalement discontinu, qui a la propriété suivante : Tout espace métrisable à base dénombrable totalement discontinu est homéomorphe à un sous-espace de K.
Espace polonais
En mathématiques, un espace métrisable à base dénombrable (ou séparable, cela revient au même pour un espace métrisable) est un espace polonais si sa topologie peut être définie par une distance qui en fait un espace complet. Tout espace compact métrisable, tout sous-espace fermé ou ouvert d'un espace polonais, tout produit dénombrable d'espaces polonais, tout espace de Banach séparable est un espace polonais. Cette terminologie a été introduite par le groupe Bourbaki, dans le volume sur la topologie générale de ses Éléments de mathématique.
Afficher plus
Cours associés (4)
MATH-688: Reading group in applied topology I
The subject of this reading group is Ginerstra Bianconi's book "Higher-order networks - an introduction to simplicial complexes". Participants will take turns presenting chapters, then leading a discu
MATH-302: Functional analysis I
Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
MATH-476: Optimal transport
The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
Afficher plus
Séances de cours associées (33)
Approches dynamiques de la théorie spectrale des opérateurs
Couvre les approches dynamiques de la théorie spectrale des opérateurs et des solutions des équations différentielles.
Approches dynamiques de la théorie spectrale des opérateurs
Explore les approches dynamiques de la théorie spectrale des opérateurs, en mettant l'accent sur les opérateurs auto-adjoints et les opérateurs Schrödinger avec des potentiels définis dynamiquement.
Processus de détermination des points et extrapolation
Couvre les processus de point déterminant, le sinus-processus et leur extrapolation dans différents espaces.
Afficher plus