Résumé
L'enthalpie de fusion (symbole : ) est l'énergie absorbée sous forme de chaleur par un corps lorsqu'il passe de l'état solide à l'état liquide à température et pression constantes. Au point de fusion d'un corps pur, elle est plus communément appelée chaleur latente de fusion car c'est sous forme de chaleur que cette énergie est absorbée et cette absorption se fait sans élévation de la température. Elle sert en quelque sorte à désorganiser les liaisons intermoléculaires qui maintiennent les molécules ensemble et non à « chauffer » au sens commun du terme. Ainsi, quand on chauffe de l'eau contenant des glaçons, la température du système reste partout égale à 0 degrés Celsius tant que les glaçons n'ont pas complètement fondu (à condition que le chauffage ne soit pas trop vif, sans quoi la température n'est plus uniforme et on se trouve hors équilibre). Le terme enthalpie de fusion renvoie précisément à la variation d'enthalpie du système considéré (par exemple, d'eau). En pratique, on peut négliger les variations de pression atmosphérique pouvant intervenir lors de la fusion car elles ont peu d'effets sur l'énergie (et donc aussi sur l'enthalpie) des solides et des liquides. La chaleur latente de fusion à pression constante est rigoureusement égale à la variation d'enthalpie du corps considéré. Elle est légèrement différente de sa variation d'énergie interne qui inclut l'énergie échangée sous forme de travail mécanique, en l'occurrence, l'effet de la pression ambiante sur la variation de volume du système (un même corps est généralement plus volumineux à l'état liquide qu'à l'état solide - l'eau faisant exception à la règle avec un comportement inverse). C'est pour s'affranchir de ce terme mécanique que la calorimétrie préfère manipuler la fonction d'état enthalpie plutôt que la fonction d'état énergie interne. En toute rigueur, la chaleur latente de fusion n'est égale à l'énergie de fusion (c'est-à-dire, la variation d'énergie interne correspondante) que si le corps est confiné dans un volume fixe, ce qui implique une forte variation de pression.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (47)
Molécule d'eau
La molécule d’eau, de formule , est le constituant essentiel de l’eau pure. Celle-ci contient également des ions résultant de l’autoprotolyse de l’eau selon l’équation d'équilibre : H + OH (ou 2 HO + OH). L’eau pure n’est pas présente dans la nature et doit être obtenue par des processus physiques. Cette molécule a des propriétés complexes à cause de sa polarisation (voir la section Nature dipolaire). L’eau à pression ambiante (environ un bar) est gazeuse au-dessus de , solide en dessous de et liquide entre les deux.
Thermodynamic databases for pure substances
Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa (1 atm), or 100 kPa (1 bar). Both of these definitions for the standard condition for pressure are in use.
Enthalpie de fusion
L'enthalpie de fusion (symbole : ) est l'énergie absorbée sous forme de chaleur par un corps lorsqu'il passe de l'état solide à l'état liquide à température et pression constantes. Au point de fusion d'un corps pur, elle est plus communément appelée chaleur latente de fusion car c'est sous forme de chaleur que cette énergie est absorbée et cette absorption se fait sans élévation de la température. Elle sert en quelque sorte à désorganiser les liaisons intermoléculaires qui maintiennent les molécules ensemble et non à « chauffer » au sens commun du terme.
Afficher plus
Cours associés (27)
ChE-201: Introduction to chemical engineering
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Afficher plus
MOOCs associés (2)
Thermodynamique II
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Afficher plus