Covering relationIn mathematics, especially order theory, the covering relation of a partially ordered set is the binary relation which holds between comparable elements that are immediate neighbours. The covering relation is commonly used to graphically express the partial order by means of the Hasse diagram. Let be a set with a partial order . As usual, let be the relation on such that if and only if and . Let and be elements of . Then covers , written , if and there is no element such that .
Birkhoff's representation theoremThis is about lattice theory. For other similarly named results, see Birkhoff's theorem (disambiguation). In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. The theorem can be interpreted as providing a one-to-one correspondence between distributive lattices and partial orders, between quasi-ordinal knowledge spaces and preorders, or between finite topological spaces and preorders.
ReachabilityIn graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex can reach a vertex (and is reachable from ) if there exists a sequence of adjacent vertices (i.e. a walk) which starts with and ends with . In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph. Any pair of vertices in such a graph can reach each other if and only if they belong to the same connected component; therefore, in such a graph, reachability is symmetric ( reaches iff reaches ).
ComparabilityIn mathematics, two elements x and y of a set P are said to be comparable with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true. They are called incomparable if they are not comparable. A binary relation on a set is by definition any subset of Given is written if and only if in which case is said to be to by An element is said to be , or (), to an element if or Often, a symbol indicating comparison, such as (or and many others) is used instead of in which case is written in place of which is why the term "comparable" is used.
Section commençanteEn mathématiques, et plus précisément en théorie des ordres, une section commençante (également appelée segment initial ou sous-ensemble fermé inférieurement) d'un ensemble ordonné (X,≤) est un sous-ensemble S de X tel que si x est dans S et si y ≤ x, alors y est dans S. Dualement, on appelle section finissante (ou sous-ensemble fermé supérieurement) un sous-ensemble F tel que si x est dans F et si x ≤ y, alors y est dans F.
Trichotomie (mathématiques)En mathématiques, le principe de la trichotomie indique que tout nombre réel est soit positif, soit négatif, soit nul. sur un ensemble X tel que pour tous x et y, seulement l'une des relations suivantes tient: , ou . En notation mathématique, ceci est noté En supposant que la commande est irréflexive et transitive, cela peut être simplifié tel que En logique classique, l'axiome de la trichotomie tient à la comparaison ordinaire entre les nombres réels, et donc aussi pour les comparaisons entre entiers et entre nombres rationnels.
PointwiseIn mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.
Ensembles causauxLes ensembles causaux (causal sets), ou théorie des ensembles causaux, est une théorie physique qui définit une approche de la gravitation quantique. Ses principes fondateurs sont que l'espace-temps est fondamentalement discret (une distribution de points d'un espace-temps discret, appelés les éléments d'ensemble causal) et que les évènements de l'espace-temps sont reliés par un ordre partiel. Cet ordre partiel possède la signification physique des relations causales des évènements de l'espace-temps.
Réunion disjointeEn mathématiques, la réunion disjointe est une opération ensembliste. Contrairement à l'union usuelle, le cardinal d'une union disjointe d'ensembles est toujours égal à la somme de leurs cardinaux. L'union disjointe d'une famille d'ensembles correspond à leur somme en théorie des catégories, c'est pourquoi on l'appelle aussi somme disjointe. C’est une opération fréquente en topologie et en informatique théorique. Dans une réunion A∪B de deux ensembles, l'origine des éléments y figurant est perdue et les éléments de l'intersection ne sont comptés qu'une seule fois.
Fence (mathematics)In mathematics, a fence, also called a zigzag poset, is a partially ordered set (poset) in which the order relations form a path with alternating orientations: or A fence may be finite, or it may be formed by an infinite alternating sequence extending in both directions. The incidence posets of path graphs form examples of fences. A linear extension of a fence is called an alternating permutation; André's problem of counting the number of different linear extensions has been studied since the 19th century.