Concept

Chromatographie en phase liquide-spectrométrie de masse

Liquid chromatography–mass spectrometry (LC–MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography (or HPLC) with the mass analysis capabilities of mass spectrometry (MS). Coupled chromatography - MS systems are popular in chemical analysis because the individual capabilities of each technique are enhanced synergistically. While liquid chromatography separates mixtures with multiple components, mass spectrometry provides spectral information that may help to identify (or confirm the suspected identity of) each separated component. MS is not only sensitive, but provides selective detection, relieving the need for complete chromatographic separation. LC–MS is also appropriate for metabolomics because of its good coverage of a wide range of chemicals. This tandem technique can be used to analyze biochemical, organic, and inorganic compounds commonly found in complex samples of environmental and biological origin. Therefore, LC–MS may be applied in a wide range of sectors including biotechnology, environment monitoring, food processing, and pharmaceutical, agrochemical, and cosmetic industries. Since the early 2000s, LC–MS (or more specifically LC–MS–MS) has also begun to be used in clinical applications. In addition to the liquid chromatography and mass spectrometry devices, an LC–MS system contains an interface that efficiently transfers the separated components from the LC column into the MS ion source. The interface is necessary because the LC and MS devices are fundamentally incompatible. While the mobile phase in a LC system is a pressurized liquid, the MS analyzers commonly operate under high vacuum. Thus, it is not possible to directly pump the eluate from the LC column into the MS source. Overall, the interface is a mechanically simple part of the LC–MS system that transfers the maximum amount of analyte, removes a significant portion of the mobile phase used in LC and preserves the chemical identity of the chromatography products (chemically inert).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (24)
CH-728: Mass spectrometry, principles and applications
The goal is to provide students with a complete overview of the principles and key applications of modern mass spectrometry and meet the current practical demand of EPFL researchers to improve structu
CH-419: Protein mass spectrometry and proteomics
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
CH-314: Structural analysis
The aim of this course is to treat three of the major techniques for structural characterization of molecules used in chemistry and chemical engineering: mass spectrometry, NMR, and X-ray techniques.
Afficher plus
Séances de cours associées (90)
Énergie de l'état du sol: oscillateur harmonique et perturbation
Couvre l'état fondamental et l'énergie des oscillateurs harmoniques et des perturbations par des potentiels bornés.
Calcul fonctionnel : fonctions simples
Couvre l'extension du calcul fonctionnel à des fonctions simples et le concept de *-homomorphisme.
Dynamique quantique : décomposition spectrale
Explore la décomposition spectrale de l'espace de Hilbert et ses implications dans la dynamique quantique.
Afficher plus
Publications associées (496)

Ru(II)-Arene Complexes of Curcumin and Bisdesmethoxycurcumin Metabolites

Paul Joseph Dyson, Farzaneh Fadaei Tirani, Mouna Hadiji

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin ...
Amer Chemical Soc2024

Nanostructure and Optical Property Tailoring of Zinc Tin Nitride Thin Films through Phenomenological Decoupling: A Pathway to Enhanced Control

Aïcha Hessler-Wyser, Johann Michler, Amit Sharma, Caroline Hain, Daniele Casari, Thomas Nelis

This work addresses the need for precise control of thin film sputtering processes to enable thin film material tailoring on the example of zinc tin nitride (ZTN) thin films deposited via microwave plasma-assisted high power reactive magnetron sputtering ( ...
Amer Chemical Soc2024

Innovative Biomarkers for Obesity and Type 1 Diabetes Based on Bifidobacterium and Metabolomic Profiling

Stephan Morgenthaler, Paul Refinetti, Mariya Yuryevna Skvortsova

The role of Bifidobacterium species and microbial metabolites such as short-chain fatty acids (SCFAs) and human milk oligosaccharides in controlling intestinal inflammation and the pathogenesis of obesity and type 1 diabetes (T1D) has been largely studied ...
MDPI2024
Afficher plus
Concepts associés (16)
Chemical ionization
Chemical ionization (CI) is a soft ionization technique used in mass spectrometry. This was first introduced by Burnaby Munson and Frank H. Field in 1966. This technique is a branch of gaseous ion-molecule chemistry. Reagent gas molecules (often methane or ammonia) are ionized by electron ionization to form reagent ions, which subsequently react with analyte molecules in the gas phase to create analyte ions for analysis by mass spectrometry.
Electron ionization
Electron ionization (EI, formerly known as electron impact ionization and electron bombardment ionization) is an ionization method in which energetic electrons interact with solid or gas phase atoms or molecules to produce ions. EI was one of the first ionization techniques developed for mass spectrometry. However, this method is still a popular ionization technique. This technique is considered a hard (high fragmentation) ionization method, since it uses highly energetic electrons to produce ions.
Chromatographie en phase gazeuse-spectrométrie de masse
La chromatographie en phase gazeuse couplée à la spectrométrie de masse, abrégé CPG-SM, ou GC-MS de l'anglais Gas chromatography-mass spectrometry, est une technique d'analyse qui combine les performances de la chromatographie en phase gazeuse, pour la séparation des composés d'un échantillon, et de la spectrométrie de masse, pour la détection et l’identification des composés en fonction de leur rapport masse sur charge. Cette technique permet d'identifier et/ou de quantifier précisément de nombreuses substances présentes en très petites quantités, voire en traces.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.