Nuisance parameterIn statistics, a nuisance parameter is any parameter which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest. The classic example of a nuisance parameter comes from the normal distribution, a member of the location–scale family. For at least one normal distribution, the variance(s), σ2 is often not specified or known, but one desires to hypothesis test on the mean(s).
Paired difference testIn statistics, a paired difference test is a type of location test that is used when comparing two sets of paired measurements to assess whether their population means differ. A paired difference test uses additional information about the sample that is not present in an ordinary unpaired testing situation, either to increase the statistical power, or to reduce the effects of confounders.
Sampling errorIn statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. It can produced biased results. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.
False discovery rateIn statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses) that are false (incorrect rejections of the null). Equivalently, the FDR is the expected ratio of the number of false positive classifications (false discoveries) to the total number of positive classifications (rejections of the null).
Test des signesEn statistique, le test des signes est une alternative non-paramétrique au test T pour des échantillons appariés. La seule condition requise par ce test est que la distribution sous-jacente de la variable étudiée soit continue. Aucune condition sur la nature ou la forme de la distribution n'est requise. Le test est applicable lorsque l'on possède deux mesures de deux variables pour chaque individu et que l'on souhaite tester la significativité des différences entre les deux mesures.