Concepts associés (17)
Recherche exhaustive
La recherche exhaustive ou recherche par force brute est une méthode algorithmique qui consiste principalement à essayer toutes les solutions possibles. Par exemple pour trouver le maximum d'un certain ensemble de valeurs, on consulte toutes les valeurs. En cryptanalyse on parle d'attaque par force brute, ou par recherche exhaustive pour les attaques utilisant cette méthode. Le principe de cet algorithme est d'essayer toutes les possibilités dans un intervalle. Un exemple courant est l'attaque par force brute des mots de passe.
Problème des huit dames
Le but du problème des huit dames est de placer huit dames d'un jeu d'échecs sur un échiquier de 8 × 8 cases sans que les dames puissent se menacer mutuellement, conformément aux règles du jeu d'échecs (la couleur des pièces étant ignorée). Par conséquent, deux dames ne doivent jamais partager la même rangée, colonne, ou diagonale. Ce problème appartient au domaine des problèmes mathématiques et non à celui de la composition échiquéenne. Simple mais non trivial, ce problème sert souvent d'exemple pour illustrer des techniques de programmation.
Problème de satisfaction de contraintes
Les problèmes de satisfaction de contraintes ou CSP (Constraint Satisfaction Problem) sont des problèmes mathématiques où l'on cherche des états ou des objets satisfaisant un certain nombre de contraintes ou de critères. Les CSP font l'objet de recherches intenses à la fois en intelligence artificielle et en recherche opérationnelle. De nombreux CSP nécessitent la combinaison d'heuristiques et de méthodes d'optimisation combinatoire pour être résolus en un temps raisonnable.
Optimisation combinatoire
L’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Programmation par contraintes
La programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).
Filtrage par motif
Le filtrage par motif est la vérification de la présence de constituants d'un motif par un programme informatique, ou parfois par un matériel spécialisé. Par contraste avec la reconnaissance de forme, les motifs sont complètement spécifiés. De tels motifs concernent conventionnellement des séquences ou des arbres. Par exemple "HDpdf" peut signifier : "Toute chaîne contenant HD et se terminant par pdf".
Métaheuristique
Une métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.
Constraint satisfaction
In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Answer set programming
L’answer set programming (ASP) est une forme de programmation déclarative adaptée aux problèmes de recherche combinatoires (par exemple, sudoku et coloration de graphes). Dans le contexte de la programmation logique, cette approche distingue deux types de négation — la négation par manque d'information, dite négation par défaut, et la négation forte ou négation logique. La négation par défaut permet de raisonner en l'absence d'information et rend l'ASP non monotone.
Constraint logic programming
Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is . In this clause, is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.