We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...
Efficient sampling and approximation of Boltzmann distributions involving large sets of binary variables, or spins, are pivotal in diverse scientific fields even beyond physics. Recent advances in generative neural networks have significantly impacted this ...
This study compares three imputation methods applied to the field observations of hydraulic head in subsurface hydrology. Hydrogeological studies that analyze the timeseries of groundwater elevations often face issues with missing data that may mislead bot ...
We present a framework for performing regression when both covariate and response are probability distributions on a compact and convex subset of Rd. Our regression model is based on the theory of optimal transport and links the conditional Fr'echet m ...
Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical development and aging processes. A robust and widely implemented ...
Autoregressive Neural Networks (ARNNs) have shown exceptional results in generation tasks across image, language, and scientific domains. Despite their success, ARNN architectures often operate as black boxes without a clear connection to underlying physic ...
Natural language processing has experienced significant improvements with the development of Transformer-based models, which employ self-attention mechanism and pre-training strategies. However, these models still present several obstacles. A notable issue ...
We consider the problem of estimating the autocorrelation operator of an autoregressive Hilbertian process. By means of a Tikhonov approach, we establish a general result that yields the convergence rate of the estimated autocorrelation operator as a funct ...
BackgroundTinnitus is a heterogeneous condition which may be associated with moderate to severe disability, but the reasons why only a subset of individuals is burdened by the condition are not fully clear. Ecological momentary assessment (EMA) allows a be ...
This work examines the problem of learning the topology of a network (graph learning) from the signals produced at a subset of the network nodes (partial observability). This challenging problem was recently tackled assuming that the topology is drawn acco ...