Dodécagonedroite|vignette|Un dodécagone régulier et ses angles remarquables. Un dodécagone est une figure de géométrie plane. C'est un polygone à 12 sommets, donc 12 côtés et 54 diagonales. La somme des angles internes d'un dodécagone non croisé est égale à . Un dodécagone régulier est un dodécagone dont les douze côtés ont la même longueur et dont les angles internes ont la même mesure. Il y en a deux : un étoilé (le dodécagramme noté {12/5}) et un convexe (noté {12}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le dodécagone régulier ».
Constructible polygonIn mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Some regular polygons are easy to construct with compass and straightedge; others are not.
Trisection de l'angleLa trisection de l'angle est un problème classique de mathématiques. C'est un problème géométrique, faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la duplication du cube. Ce problème consiste à diviser un angle en trois parties égales, à l'aide d'une règle et d'un compas. Sous cette forme, le problème (comme les deux autres) n'a pas de solution, ce qui fut démontré par Pierre-Laurent Wantzel en 1837.
Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.