Algorithme de parcours en largeurL'algorithme de parcours en largeur (ou BFS, pour Breadth-First Search en anglais) permet le parcours d'un graphe ou d'un arbre de la manière suivante : on commence par explorer un nœud source, puis ses successeurs, puis les successeurs non explorés des successeurs, etc. L'algorithme de parcours en largeur permet de calculer les distances de tous les nœuds depuis un nœud source dans un graphe non pondéré (orienté ou non orienté). Il peut aussi servir à déterminer si un graphe non orienté est connexe.
Graphe nulEn mathématiques, plus spécialement en théorie des graphes, un graphe nul désigne soit un graphe d'ordre zéro (i.e. sans sommets), soit un graphe avec sommets mais sans arêtes (on parle aussi dans ce dernier cas de graphe vide). Lorsqu'un graphe nul contient des sommets tous isolés, on le note où représente le nombre de sommets du graphe. La taille (i.e. le nombre d'arêtes ou d'arcs) d'un graphe nul est toujours zéro. L'ordre (i.e. le nombre de sommets) d'un graphe nul n'est pas nécessairement zéro.
Théorie algébrique des graphesvignette|Le graphe de Petersen, qui possède 10 sommets et 15 arêtes. Hautement symétrique, il est en particulier distance-transitif. Son groupe d'automorphisme a 120 éléments et est en fait le groupe symétrique S. De diamètre 2, il possède 3 valeurs propres. En mathématiques, la théorie algébrique des graphes utilise des méthodes algébriques pour résoudre des problèmes liés aux graphes, par opposition à des approches géométriques, combinatoires ou algorithmiques.
Matrice de permutationUne matrice de permutation est une matrice carrée qui vérifie les propriétés suivantes : les coefficients sont 0 ou 1 ; il y a un et un seul 1 par ligne ; il y a un et un seul 1 par colonne. Ainsi : est une matrice de permutation. Les matrices de permutations carrées de taille n sont en bijection avec les permutations de l'ensemble {1,2,...n}. Si σ est une telle permutation, la matrice correspondante est de terme général Cette bijection est un morphisme de groupes : En utilisant cette identité avec deux permutations inverses l'une de l'autre, on obtient le fait qu'une matrice de permutation est inversible, et que son inverse est la matrice de la permutation inverse.
Liste d'adjacencethumb|Pour chaque sommet, la liste d'adjacence est représentée en jaune. En algorithmique, une liste d'adjacence est une structure de données utilisée pour représenter un graphe. Cette représentation est particulièrement adaptée aux graphes creux (c'est-à-dire peu denses), contrairement à la matrice d'adjacence adaptée aux graphes denses. La liste d'adjacence d'un graphe non orienté, est la liste des voisins de chaque sommet. Celle d'un graphe orienté est typiquement, pour chaque sommet, la liste de nœuds à la tête de chaque arête ayant le sommet comme queue.
Distance matrixIn mathematics, computer science and especially graph theory, a distance matrix is a square matrix (two-dimensional array) containing the distances, taken pairwise, between the elements of a set. Depending upon the application involved, the distance being used to define this matrix may or may not be a metric. If there are N elements, this matrix will have size N×N. In graph-theoretic applications, the elements are more often referred to as points, nodes or vertices. In general, a distance matrix is a weighted adjacency matrix of some graph.
MultigraphIn mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called parallel edges), that is, edges that have the same end nodes. Thus two vertices may be connected by more than one edge. There are 2 distinct notions of multiple edges: Edges without own identity: The identity of an edge is defined solely by the two nodes it connects. In this case, the term "multiple edges" means that the same edge can occur several times between these two nodes.
Partitionnement spectralEn informatique théorique, le partitionnement spectral ou spectral clustering en anglais, est un type de partitionnement de données prenant en compte les propriétés spectrales de l'entrée. Le partitionnement spectral utilise le plus souvent les vecteurs propres d'une matrice de similarités. Par rapport à des algorithmes classiques comme celui des k-moyennes, cette technique offre l'avantage de classer des ensembles de données de structure « non-globulaire », dans un espace de représentation adéquat.
Densité d'un grapheEn mathématiques, et plus particulièrement en théorie des graphes, on peut associer à tout graphe un entier appelé densité du graphe. Ce paramètre mesure si le graphe a beaucoup d'arêtes ou peu. Un graphe dense (dense graph) est un graphe dans lequel le nombre d'arêtes (ou d'arcs) est proche du nombre maximal, par exemple un nombre quadratique par rapport au nombre de sommets. Un graphe creux (sparse graph) a au contraire peu d'arêtes, par exemple un nombre linéaire. La distinction entre graphe creux et dense est plutôt vague et dépend du contexte.
Graphe distance-régulierEn théorie des graphes, un graphe régulier est dit distance-régulier si pour tous sommets distants de , et pour tous entiers naturels , il y a toujours le même nombre de sommets qui sont à la fois à distance de et à distance de . De manière équivalente, un graphe est distance-régulier si pour tous sommets , le nombre de sommets voisins de à distance de et le nombre de sommets voisins de à distance de ne dépendent que de et de la distance entre et . Formellement, tels que et où est l’ensemble des sommets à distance de , et .