Résumé
In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called parallel edges), that is, edges that have the same end nodes. Thus two vertices may be connected by more than one edge. There are 2 distinct notions of multiple edges: Edges without own identity: The identity of an edge is defined solely by the two nodes it connects. In this case, the term "multiple edges" means that the same edge can occur several times between these two nodes. Edges with own identity: Edges are primitive entities just like nodes. When multiple edges connect two nodes, these are different edges. A multigraph is different from a hypergraph, which is a graph in which an edge can connect any number of nodes, not just two. For some authors, the terms pseudograph and multigraph are synonymous. For others, a pseudograph is a multigraph that is permitted to have loops. A multigraph G is an ordered pair G := (V, E) with V a set of vertices or nodes, E a multiset of unordered pairs of vertices, called edges or lines. A multigraph G is an ordered triple G := (V, E, r) with V a set of vertices or nodes, E a set of edges or lines, r : E → {{x,y} : x, y ∈ V}, assigning to each edge an unordered pair of endpoint nodes. Some authors allow multigraphs to have loops, that is, an edge that connects a vertex to itself, while others call these pseudographs, reserving the term multigraph for the case with no loops. A multidigraph is a directed graph which is permitted to have multiple arcs, i.e., arcs with the same source and target nodes. A multidigraph G is an ordered pair G := (V, A) with V a set of vertices or nodes, A a multiset of ordered pairs of vertices called directed edges, arcs or arrows. A mixed multigraph G := (V, E, A) may be defined in the same way as a mixed graph. A multidigraph or quiver G is an ordered 4-tuple G := (V, A, s, t) with V a set of vertices or nodes, A a set of edges or lines, assigning to each edge its source node, assigning to each edge its target node.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
PHYS-512: Statistical physics of computation
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
Afficher plus
Séances de cours associées (22)
Analyse statistique des données du réseau : réseaux échantillonnés Noisy
Explore l'analyse statistique des données du réseau, couvrant les réseaux échantillonnés bruyants, l'estimation de la probabilité, les réseaux multicouches et les réseaux dirigés.
Modèles graphiques : Représentation des distributions probabilistes
Couvre les modèles graphiques pour les distributions probabilistes à l'aide de graphiques, de nœuds et de bords.
Entrelacer les familles et les graphiques de Ramanujan
Explore l'entrelacement des familles de polynômes et des graphiques de Ramanujan à un côté, en se concentrant sur leurs propriétés et leurs méthodes de construction.
Afficher plus
Publications associées (12)
Concepts associés (14)
Boucle (théorie des graphes)
In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices): Where graphs are defined so as to allow loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph.
Graphe orienté
thumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Graph rewriting
In computer science, graph transformation, or graph rewriting, concerns the technique of creating a new graph out of an original graph algorithmically. It has numerous applications, ranging from software engineering (software construction and also software verification) to layout algorithms and picture generation. Graph transformations can be used as a computation abstraction. The basic idea is that if the state of a computation can be represented as a graph, further steps in that computation can then be represented as transformation rules on that graph.
Afficher plus