Couvre les méthodes du noyau dans l'apprentissage automatique, en se concentrant sur le surajustement, la sélection du modèle, la validation croisée, la régularisation, les fonctions du noyau et la SVM.
Explore les principes fondamentaux de la robotique mobile, en mettant l'accent sur les incertitudes dans la localisation, la fusion des capteurs et le filtre Kalman étendu.
Introduit des notions fondamentales dans le filtrage numérique, couvrant les approches de filtrage 2D, les filtres linéaires, la stabilité, les filtres FIR et IIR, le filtrage de domaine de fréquence et les filtres gaussiens.
Explore la connexion entre les réseaux neuronaux et la théorie quantique du champ, en se concentrant sur la correspondance entre les espaces de paramètres et de fonctions.
Couvre les techniques de traitement de l'image, y compris l'ajout de bruit, le filtrage et l'amélioration de l'image à l'aide de divers filtres et outils.