Algebraic geometry and analytic geometryIn mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.
Dual abelian varietyIn mathematics, a dual abelian variety can be defined from an abelian variety A, defined over a field K. To an abelian variety A over a field k, one associates a dual abelian variety Av (over the same field), which is the solution to the following moduli problem. A family of degree 0 line bundles parametrized by a k-variety T is defined to be a line bundle L on A×T such that for all , the restriction of L to A×{t} is a degree 0 line bundle, the restriction of L to {0}×T is a trivial line bundle (here 0 is the identity of A).
Variété complèteEn mathématiques, en particulier en géométrie algébrique, une variété algébrique complète est une variété algébrique X, telle que pour toute variété Y le morphisme de projection est une application fermée (c'est-à-dire qu'elle envoie les fermés sur des fermés). Cela peut être vu comme un analogue de la compacité en géométrie algébrique : en effet, un espace topologique X est compact si et seulement si l'application de projection ci-dessus est fermée par rapport aux produits topologiques.
Albanese varietyIn mathematics, the Albanese variety , named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. The Albanese variety is the abelian variety generated by a variety taking a given point of to the identity of . In other words, there is a morphism from the variety to its Albanese variety , such that any morphism from to an abelian variety (taking the given point to the identity) factors uniquely through .
Courbe hyperelliptiquedroite|vignette|Une courbe hyperelliptique, d'équation En géométrie algébrique, une courbe hyperelliptique est un cas particulier de courbe algébrique de genre g > 1 donnée par une équation de la forme : où f(x) est un polynôme de degré n = 2g + 1 > 4 ou avec n = 2g + 2 > 4 racines distinctes et h(x) est un polynôme de degré strictement inférieur à g + 2 (si la caractéristique du corps commutatif n'est pas 2, on peut prendre h(x) = 0).
Proper morphismIn algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field k a complete variety. For example, every projective variety over a field k is proper over k. A scheme X of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space X(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper.
IsogenyIn mathematics, particularly in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel. If the groups are abelian varieties, then any morphism f : A → B of the underlying algebraic varieties which is surjective with finite fibres is automatically an isogeny, provided that f(1_A) = 1_B. Such an isogeny f then provides a group homomorphism between the groups of k-valued points of A and B, for any field k over which f is defined.
Intégrale abélienneEn mathématiques, une intégrale abélienne, nommée ainsi en honneur du mathématicien Niels Abel, est une intégrale dans le plan complexe de la forme : où est une fonction rationnelle arbitraire des deux variables et , reliées par l'équation : où est un polynôme irréductible en : dont les coefficients sont aussi des fonctions rationnelles en . La valeur d'une intégrale abélienne dépend non seulement des bornes d'intégration, mais aussi du chemin d'intégration. C'est donc une fonction multivaluée de .
Méthode de descente infinieLa méthode de descente infinie est un argument mathématique voisin du raisonnement par récurrence, mais aussi du raisonnement par l'absurde, qui utilise le fait qu'une suite d'entiers naturels strictement décroissante est nécessairement finie. Cette méthode repose sur l'une des propriétés des entiers naturels : « tout ensemble non vide d'entiers naturels possède un plus petit élément. » Soit P(n) une propriété faisant intervenir un entier naturel n. On cherche à démontrer que P(n) est fausse pour tout n.
Théorie d'IwasawaLa théorie d'Iwasawa peut être vue comme une tentative d'étendre les résultats arithmétiques classiques sur les corps de nombres (extensions finies du corps des rationnels) à des extensions infinies de , par des procédés de passage à la limite des extensions finies vers les extensions infinies. Les objets de base de la théorie d'Iwasawa sont les -extensions ; c'est-à-dire des extensions galoisiennes dont le groupe de Galois est le groupe profini , pour un nombre premier fixé.