Ur-elementEn théorie des ensembles, un ur-element (ou urelement) est quelque chose qui n'est pas un ensemble mais qui peut être élément d'un ensemble. Ainsi, si u est un ur-element, et X un ensemble, on peut avoir ou non : u ∈ X, mais X ∈ u est impossible. Ils partagent ainsi avec le seul ensemble vide le fait de ne posséder aucun élément, mais pour des raisons tout à fait différentes : rien ne peut appartenir à un ur-element parce que cela n'a pas de sens, alors que rien n'appartient à l'ensemble vide par définition.
Équivalence élémentaireEn mathématiques, et plus spécifiquement en théorie des modèles, on dit que deux structures pour un même langage formel sont élémentairement équivalentes quand elles satisfont les mêmes énoncés (formules closes) de la logique du premier ordre, dit autrement leurs théories (du premier ordre) sont les mêmes. L'équivalence élémentaire est une notion typiquement logique en ce qu'elle fait intervenir le langage pour définir une relation entre structures. Elle diffère de la notion algébrique d'isomorphisme.
Hypothèse du continuEn théorie des ensembles, l'hypothèse du continu (HC), due à Georg Cantor, affirme qu'il n'existe aucun ensemble dont le cardinal est strictement compris entre le cardinal de l'ensemble des entiers naturels et celui de l'ensemble des nombres réels. En d'autres termes : tout ensemble strictement plus grand, au sens de la cardinalité, que l'ensemble des entiers naturels doit contenir une « copie » de l'ensemble des nombres réels.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Univers (logique)En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels.
Axiome du choixvignette|upright=1.5|Pour tout ensemble d'ensembles non vides (les jarres), il existe une fonction qui associe à chacun de ces ensembles (ces jarres) un élément contenu dans cet ensemble (cette jarre). En mathématiques, l'axiome du choix, abrégé en « AC », est un axiome de la théorie des ensembles qui Il a été formulé pour la première fois par Ernest Zermelo en 1904 pour la démonstration du théorème de Zermelo. L'axiome du choix peut être accepté ou rejeté, selon la théorie axiomatique des ensembles choisie.
Axiome de déterminationL'axiome de détermination est un axiome alternatif de la théorie des ensembles affirmant que certains jeux (au sens de la théorie des jeux) infinis sont déterminés. Cet axiome n'est pas compatible avec l'axiome du choix mais implique l'axiome du choix dénombrable pour les familles d'ensembles de réels et implique également une forme faible de l'hypothèse du continu.