vignette|upright=1.5|Pour tout ensemble d'ensembles non vides (les jarres), il existe une fonction qui associe à chacun de ces ensembles (ces jarres) un élément contenu dans cet ensemble (cette jarre). En mathématiques, l'axiome du choix, abrégé en « AC », est un axiome de la théorie des ensembles qui Il a été formulé pour la première fois par Ernest Zermelo en 1904 pour la démonstration du théorème de Zermelo. L'axiome du choix peut être accepté ou rejeté, selon la théorie axiomatique des ensembles choisie. L'axiome du choix peut s'énoncer comme suit : (0) « Pour tout ensemble X d'ensembles non vides, il existe une fonction définie sur X, appelée fonction de choix, qui à chaque ensemble A appartenant à X associe un élément de cet ensemble A. » ce qui s'écrit formellement : L'appel à cet axiome n'est pas nécessaire si X est un ensemble fini car c'est une conséquence de la définition d'ensemble non vide (c'est-à-dire qu'il existe un élément appartenant à cet ensemble). Dans ce cas, le résultat se montre par récurrence sur le nombre d'éléments de X. Il y a d'autres cas où une fonction de choix f peut être définie sans l'axiome du choix. Par exemple, pour un ensemble X d'ensembles non vides d'entiers naturels, on peut définir une fonction de choix en posant, pour A un élément de X, f(A) égal au plus petit élément de A (on s'est servi de la propriété de bon ordre sur les entiers naturels, et non de l'axiome du choix). Cependant dans le cas général, l'existence d'une fonction de choix repose sur l'axiome ci-dessus, par exemple pour démontrer le théorème de König. On trouve d'autres formulations de l'axiome du choix, très proches de la précédente, dont les suivantes : (0') Pour tout ensemble E, il existe une fonction qui à chaque partie non vide de E associe un élément de cette partie. (1) Pour toute relation d'équivalence R, il existe un système de représentants des classes de R. (2) Toute surjection possède une section. (3) Le produit ∏ X d'une famille (X) d'ensembles non vides est non vide.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
MATH-318: Set theory
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
MATH-463: Mathematical modelling of behavior
Discrete choice models allow for the analysis and prediction of individuals' choice behavior. The objective of the course is to introduce both methodological and applied aspects, in the field of marke
AR-599: Master project in Architecture
Le Projet de Master, d'une durée d'un semestre, est un projet d'architecture mené par l'étudiant·e de manière autonome. Il·elle choisit lui·elle-même les membres du groupe de suivi, la thématique et l
Afficher plus
Publications associées (80)
Concepts associés (37)
Théorie des ensembles
La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Nombre réel
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Nombre cardinal
vignette|Le nombre cardinal des deux ensembles X et Y est 4 En linguistique, les nombres entiers naturels zéro, un, deux, trois, etc. s’appellent des adjectifs numéraux cardinaux. En théorie des ensembles, le nombre cardinal ou cardinal d'un ensemble E (fini ou infini) est, intuitivement, le « nombre » d'éléments lui appartenant. On peut définir formellement ce « nombre » comme la classe de tous les ensembles équipotents à E (c'est-à-dire en bijection avec E), ou, de manière fort différente, comme le plus petit ordinal équipotent à E.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.