Concepts associés (5)
Line graph
En théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Graphe de Petersen
Le graphe de Petersen est, en théorie des graphes, un graphe particulier possédant et . Il s'agit d'un petit graphe qui sert d'exemple et de contre-exemple pour plusieurs problèmes de la théorie des graphes. Il porte le nom du mathématicien Julius Petersen, qui l'introduisit en 1898 en tant que plus petit graphe cubique sans isthme dont les arêtes ne peuvent être colorées avec trois couleurs. Il a cependant été mentionné par Alfred Kempe pour la première fois auparavant, en 1886.
Graphe cubique
En théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. Le graphe complet K4 est le plus petit graphe cubique. Le graphe biparti complet K3,3 est le plus petit graphe cubique non-planaire. Le graphe de Petersen est le plus petit graphe cubique de maille 5. Le graphe de Heawood est le plus petit graphe cubique de maille 6.
Graphe complémentaire
frame|right|Le graphe de Petersen, à gauche et son complémentaire, à droite. En théorie des graphes, le graphe complémentaire ou graphe inversé d'un graphe simple est un graphe simple ayant les mêmes sommets et tel que deux sommets distincts de soient adjacents si et seulement s'ils ne sont pas adjacents dans . Le graphe complémentaire ne doit pas être confondu avec le complémentaire dans le sens de la théorie des ensembles. En effet, l'ensemble des sommets de G reste inchangé. Le complémentaire du complémentaire est le graphe original.
Graphe symétrique
En théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.