Fiber product of schemesIn mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. The of schemes is a broad setting for algebraic geometry.
Champ algébriqueIn mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth.
Morphism of schemesIn algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. By definition, a morphism of schemes is just a morphism of locally ringed spaces. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties).
Coordonnées grassmanniennesLes coordonnées grassmanniennes sont une généralisation des coordonnées plückeriennes qui permettent de paramétrer les sous espaces de dimension de l'espace vectoriel par un élément de l'espace projectif de l'espace vectoriel des produits extérieurs des familles de vecteurs de . Le plongement plückerien est un plongement naturel de la variété grassmannienne dans l'espace projectif : Ce plongement est défini comme suit.
Arithmetic genusIn mathematics, the arithmetic genus of an algebraic variety is one of a few possible generalizations of the genus of an algebraic curve or Riemann surface. Let X be a projective scheme of dimension r over a field k, the arithmetic genus of X is defined asHere is the Euler characteristic of the structure sheaf . The arithmetic genus of a complex projective manifold of dimension n can be defined as a combination of Hodge numbers, namely When n=1, the formula becomes . According to the Hodge theorem, .
Formule genre-degréEn géométrie algébrique, la formule genre - degré est une équation reliant le degré d d'une courbe plane irréductible avec son genre arithmétique g par la formule : Ici « courbe plane » signifie que est une courbe fermée dans le plan projectif . Si la courbe est non singulière, le genre géométrique et le genre arithmétique sont égaux, mais si la courbe est singulière, avec seulement des singularités ordinaires, le genre géométrique a priori est plus petit. Plus précisément, une singularité ordinaire de multiplicité r diminue le genre de .
Algebraic spaceIn mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.
Variété rationnelleEn géométrie algébrique, une variété rationnelle est une variété algébrique (intègre) V sur un corps K qui est birationnelle à un espace projectif sur K, c'est-à-dire qu'un certain ouvert dense de V est isomorphe à un ouvert d'un espace projectif. De façon équivalente, cela signifie que son corps de fonctions est isomorphe au corps des fractions rationnelles à d indéterminées K(U, ... , U), l'entier d étant alors égal à la dimension de la variété. Soit V une variété algébrique affine de dimension d définie par un idéal premier ⟨f, .
Rational mappingIn mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Formally, a rational map between two varieties is an equivalence class of pairs in which is a morphism of varieties from a non-empty open set to , and two such pairs and are considered equivalent if and coincide on the intersection (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
Twisted cubicIn mathematics, a twisted cubic is a smooth, rational curve C of degree three in projective 3-space P3. It is a fundamental example of a skew curve. It is essentially unique, up to projective transformation (the twisted cubic, therefore). In algebraic geometry, the twisted cubic is a simple example of a projective variety that is not linear or a hypersurface, in fact not a complete intersection. It is the three-dimensional case of the rational normal curve, and is the of a Veronese map of degree three on the projective line.