Concept

Generalized chi-squared distribution

In probability theory and statistics, the generalized chi-squared distribution (or generalized chi-square distribution) is the distribution of a quadratic form of a multinormal variable (normal vector), or a linear combination of different normal variables and squares of normal variables. Equivalently, it is also a linear sum of independent noncentral chi-square variables and a normal variable. There are several other such generalizations for which the same term is sometimes used; some of them are special cases of the family discussed here, for example the gamma distribution. The generalized chi-squared variable may be described in multiple ways. One is to write it as a linear sum of independent noncentral chi-square variables and a normal variable: Here the parameters are the weights , the degrees of freedom and non-centralities of the constituent chi-squares, and the normal parameters and . Some important special cases of this have all weights of the same sign, or have central chi-squared components, or omit the normal term. Since a non-central chi-squared variable is a sum of squares of normal variables with different means, the generalized chi-square variable is also defined as a sum of squares of independent normal variables, plus an independent normal variable: that is, a quadratic in normal variables. Another equivalent way is to formulate it as a quadratic form of a normal vector : Here is a matrix, is a vector, and is a scalar. These, together with the mean and covariance matrix of the normal vector , parameterize the distribution. The parameters of the former expression (in terms of non-central chi-squares, a normal and a constant) can be calculated in terms of the parameters of the latter expression (quadratic form of a normal vector). If (and only if) in this formulation is positive-definite, then all the in the first formulation will have the same sign. For the most general case, a reduction towards a common standard form can be made by using a representation of the following form: where D is a diagonal matrix and where x represents a vector of uncorrelated standard normal random variables.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.