En finance, le modèle binomial (ou modèle CRR du nom de ses auteurs) fournit une méthode numérique pour l'évaluation des options. Il a été proposé pour la première fois par Cox, Ross et Rubinstein (1979). Le modèle est un modèle discret pour la dynamique du sous-jacent. L'évaluation de l'option est calculée par application de la probabilité risque-neutre pour laquelle les prix actualisés sont des martingales.
La méthode binomiale, pour valoriser les options, est très largement utilisée car elle est capable de prendre en compte un nombre important de conditions pour lesquelles l’application d’autres modèles n’est pas aisée. Cela vient en grande partie du fait que la méthode binomiale prend en compte les variations de l’actif sous-jacent (contrairement aux autres méthodes qui ne prennent en compte qu’un point fixe). Par exemple la méthode binomiale est utilisée pour les options américaines (celles-ci peuvent être exercées à tout moment) et les options Bermudiennes (celles-ci peuvent être exercées à différents moments). Elle peut aussi l'être pour les SPAC. La méthode binomiale est de plus mathématiquement relativement simple et peut être facilement programmée en logiciel (ou éventuellement sur une feuille de calcul).
Bien que plus lente que la méthode de Black-Scholes, la méthode binomiale est considérée comme plus précise, particulièrement pour les options à long terme et les options sur titre versant des dividendes. C’est pourquoi il existe plusieurs versions du modèle binomial qui sont utilisées par les personnes travaillant sur le marché des options.
Pour les options comportant plusieurs sources d’incertitudes (par exemple les options réelles) ou pour les options complexes (par exemple les options asiatiques) l’application de la méthode binomiale en « arbre » présente des difficultés et n’est pas pratique. Dans ces cas-là il vaut mieux utiliser la Méthode de Monte-Carlo.
La méthode binomiale utilise un « cadre à temps discret » pour retracer l’évolution de l’actif sous-jacent, via un arbre, pour un nombre donné de « pas » qui correspond au temps entre la date d’évaluation et celle de l’expiration de l’option.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En finance, une option est un produit dérivé qui établit un contrat entre un acheteur et un vendeur. L'acheteur de l'option obtient le droit, et non pas l'obligation, d'acheter (call) ou de vendre (put) un actif sous-jacent à un prix fixé à l'avance (strike), pendant un temps donné ou à une date fixée. Ce contrat peut se faire dans une optique de spéculation sur le prix futur de l'actif sous-jacent, ou d'assurance contre une évolution défavorable de ce prix.
L'analyse par les options réelles (AOR) est un outil financier d'aide à la décision en matière d'investissement, directement inspiré des techniques d’options financières (« call » ou « put »). L’option réelle permet de prendre une décision stratégique d'investissement relative à un actif sous-jacent non financier. Ce sous-jacent peut être un projet ou un actif réel du type : bien d'équipement, usine de production, projet R&D, activité en phase de démarrage ou de croissance, ou bien encore propriété intellectuelle.
Les mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
This course gives you an easy introduction to interest rates and related contracts. These include the LIBOR, bonds, forward rate agreements, swaps, interest rate futures, caps, floors, and swaptions.
The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mat
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
The objective of this course is to provide a detailed coverage of the standard models for the valuation and hedging of derivatives products such as European options, American options, forward contract
Explore les systèmes de réfrigération au gaz, y compris les cycles de Brayton et les pompes à chaleur, en discutant des principes, des performances et des approches d'optimisation.
Deciding on a course of action requires both an accurate estimation of option values and the right amount of effort invested in deliberation to reach suf fi cient con fi dence in the fi nal choice. In a previous study, we have provided evidence, across a s ...
In this thesis we present three closed form approximation methods for portfolio valuation and risk management.The first chapter is titled ``Kernel methods for portfolio valuation and risk management'', and is a joint work with Damir Filipovi'c (SFI and EP ...
In this article, we account for the liquidity risk in the underlying assets when pricing European exchange options, which has not been considered in the literature. An Ornstein-Uhlenbeck process with the mean -reversion property is selected to model the ma ...