Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.
For the items in commutative algebra (the theory of commutative rings), see glossary of commutative algebra. For ring-theoretic concepts in the language of modules, see also Glossary of module theory.
For specific types of algebras, see also: Glossary of field theory and Glossary of Lie groups and Lie algebras. Since, currently, there is no glossary on not-necessarily-associative algebra-structures in general, this glossary includes some concepts that do not need associativity; e.g., a derivation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In the area of abstract algebra known as ring theory, a left perfect ring is a type of ring in which all left modules have projective covers. The right case is defined by analogy, and the condition is not left-right symmetric; that is, there exist rings which are perfect on one side but not the other. Perfect rings were introduced in Bass's book. A semiperfect ring is a ring over which every finitely generated left module has a projective cover. This property is left-right symmetric.
In abstract algebra, in particular ring theory, the Akizuki–Hopkins–Levitzki theorem connects the descending chain condition and ascending chain condition in modules over semiprimary rings. A ring R (with 1) is called semiprimary if R/J(R) is semisimple and J(R) is a nilpotent ideal, where J(R) denotes the Jacobson radical. The theorem states that if R is a semiprimary ring and M is an R-module, the three module conditions Noetherian, Artinian and "has a composition series" are equivalent.
In mathematics, the Köthe conjecture is a problem in ring theory, open . It is formulated in various ways. Suppose that R is a ring. One way to state the conjecture is that if R has no nil ideal, other than {0}, then it has no nil one-sided ideal, other than {0}. This question was posed in 1930 by Gottfried Köthe (1905–1989). The Köthe conjecture has been shown to be true for various classes of rings, such as polynomial identity rings and right Noetherian rings, but a general solution remains elusive.