In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself. Variants of this notion apply to systems of ordinary differential equations, vector fields on smooth manifolds and flows generated by them, and diffeomorphisms. Structurally stable systems were introduced by Aleksandr Andronov and Lev Pontryagin in 1937 under the name "systèmes grossiers", or rough systems. They announced a characterization of rough systems in the plane, the Andronov–Pontryagin criterion. In this case, structurally stable systems are typical, they form an open dense set in the space of all systems endowed with appropriate topology. In higher dimensions, this is no longer true, indicating that typical dynamics can be very complex (cf. strange attractor). An important class of structurally stable systems in arbitrary dimensions is given by Anosov diffeomorphisms and flows. During the late 1950s and the early 1960s, Maurício Peixoto and Marília Chaves Peixoto, motivated by the work of Andronov and Pontryagin, developed and proved Peixoto's theorem, the first global characterization of structural stability. Let G be an open domain in Rn with compact closure and smooth (n−1)-dimensional boundary. Consider the space X1(G) consisting of restrictions to G of C1 vector fields on Rn that are transversal to the boundary of G and are inward oriented. This space is endowed with the C1 metric in the usual fashion. A vector field F ∈ X1(G) is weakly structurally stable if for any sufficiently small perturbation F1, the corresponding flows are topologically equivalent on G: there exists a homeomorphism h: G → G which transforms the oriented trajectories of F into the oriented trajectories of F1.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (7)
Théorie de la stabilité
En mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Cycle limite
Dans le domaine des systèmes dynamiques, un cycle limite, ou cycle-limite sur un plan ou une variété bidimensionnelle est une trajectoire fermée dans l'espace des phases, telle qu'au moins une autre trajectoire spirale à l'intérieur lorsque le temps tend vers . Ces comportements s'observent dans certains systèmes non linéaires. Si toutes les trajectoires voisines approchent le cycle limite lorsque t , on parle de cycle limite stable ou attractif. Si en revanche cela se produit lorsque t , on parle de cycle limite instable ou non attractif.
Arnold tongue
In mathematics, particularly in dynamical systems, Arnold tongues (named after Vladimir Arnold) are a pictorial phenomenon that occur when visualizing how the rotation number of a dynamical system, or other related invariant property thereof, changes according to two or more of its parameters. The regions of constant rotation number have been observed, for some dynamical systems, to form geometric shapes that resemble tongues, in which case they are called Arnold tongues.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.